
Hardware Security and Trust
Challenges in Emerging IoT
Systems and Applications

UNIVERSITY OF NORTH CAROLINA

Prof. Fareena Saqib (fsaqib@uncc.edu) ECE DepT, UNCC

HOST TUTORIAL 2018

Agenda Layout

1

2

3

4

Introduction to Internet of Things and
Cybersecurity

Security challenges in Automotive
Security

Future directions in research

5

6

7

8

Conclusion and Q&A session

Hardware demo of secure
communication

Automotive Ethernet

Architectural and Hardware security

Trusted platform module

FPGA as ECU platform

9

10

Secure boot

Internet of Things: An Era of Smart

Amazon Alexa

3D-Printer build a house

Virtual Reality
Oculus Rift and Omni treadmill

Holus is a triangular holographic chamber

Amazon Fire TV Stick

Internet of Things: IoT Characteristics

 IoT, a major shift in computing.

 IoT is a major shift of consumer interacts

with the technology and interface with the

Internet.

 IoT making progress in initiatives such as

smart grid, and intelligent vehicles.

 Computing devices are becoming

distributed, unsupervised, and physically

exposed

IOT Challenges

 Connecting devices, exchanging data with the other nodes and server/cloud.

 Delivering value through smart interfaces and user experience

Privacy

Standards

Legal Regulatory

cybersecurity

Scalability

IOT Security Issues

 Long life cycles of IoTs

 Provisioning keys and key

management life cycle

 Security assessment of equipment

connected via gateways, that were

never intended to be connected.

 Device identification for device-to-

device communication

 Availability and system resilience.

 Scalability

Requires holistic view of
device to gateway to cloud
and the communication
between them.

IOT Security Concerns
 Privacy Concerns

 Collect personal information

 Unencrypted transmission across networks.

 Authentication/Authorization mechanism

 Weak passwords

 Firmware Updates

 Unencrypted software and firmware updates

 Network Encryption

 Use of insecure and unencrypted network services.

 ZigBee, Bluetooth, Ethernet, Wireless sensor networks and Internet

 Web Interfaces

 Poor session management, cookies

 Persistent cross site scripting.

 Device Security

 Hardware lacks key management system, and no established root of trust

IOT Attack Surface

 The data and control paths and I/O ports of

the devices.

 The processes that protects these paths.

 All valuable data used in the device,

including secrets and keys.

 The external cryptographic functions that

protects these data.

IOT Attacks

4th January: Spectre and Meltdown were first publicly reported.24th April: Hackers exploited USB based rescue m
ode to overtake Nintendo Switch console.

25th April: Finnish researchers are able to clone hot
el master keys using $300 RFID card reader and an
expired keycard.

26th April: Alexa’s built-in JavaScript library can turn on listening an
d bypass the requirement for trigger words.

IOT Security and Trust

 There is no silver bullet for security.

 Devices needs to be built with security in

the design flow.

 Develop key life cycle management.

 Communications paths for security events

and encryption.

 Foresee the issues by applying analytics.

 Secure framework design and integration

with IoT.

Automotive Class of IoTs

 Electronics as an innovation driver.

 Safety – Air bags.

 Advanced driver assistance system ADAS.

 Self Driving Cars.

 Smart charging – A key to successful

E-Mobility and autonomous charging.

Automotive: Security and Trust Threats and Attacks

1970s 1980s 1990s 2000s

http://www.dailymail.co.uk/sciencetech/article-3737375/Security-experts-reveal-40-device-allow-thieves-wirelessly-unlock-nearly-Volkswagen-1995.html

https://www.wired.com/2016/03/study-finds-24-car-models-open-unlocking-ignition-hack/

Automotive: Safety Threats

1970s 1980s 1990s 2000s

A Tesla Model S that crashed while in self driving mode which resulted in the death
of Joshua Brown on May 7, 2016. FLORIDA HIGHWAY PATROL

Automotive: Communication as a
Attack Surface

• In-vehicle systems communicate with the

outside world in multiple ways

• Vehicles can be hacked with physical or

remote access through Bluetooth, OBD-II

, RF signals, and more

Automotive: V2X Communication
• 2002: American Society of Testing and Materials (ASTM)

published WLAN based V2X communication standard ASTM

E-2213.

• 2004: IEEE released initial standard for 802.11p standard.

• 2007: IEEE introduced 1609.X standard. It is based on 802.11p

standard and provides Layer 3 and Layer 4 of the OSI. Also

known as WAVE (Wireless Access in Vehicular Environments)

• 2012-2013: In Japan, Association of Radio Industries and

Business released the ARIB STD-T109 standard. It provides

V2V and V2I communication on 700MHz.

• 2017: 3GPP releases LTE-V based V2I and V2X

communication physical layer standards.

Automotive: Communication

Domain Description End-to-End
Latency Re
quirements

Bandwidth Re
quirements

Powertrain Controls the compone
nts that generate pow
er and transmit to the
road

<10µs Low

Chassis Controls steering, bra
kes, suspension

<10µs Low

Body and Comfort Radio, A/C, Window,
Seat, and light control
s

<10ms Low

Driver Assistance a
nd Driver Safety

Controls systems desi
gned to increase safet
y

<250µs or <1ms
Depending on th
e system

20-100 Mbps per c
amera

Human-Machine Int
erface

Controls displays and
other interfaces that in
terface with the driver
or passengers

<10ms Varies by system, t
he requirements ar
e increasing

Automotive Communication
2001: MOST (Media Oriented Systems Transport)
MOST has a ring architecture running at up to 50Mbps
using either fiber or copper interconnects. Each ring
can contain up to 64 MOST devices

Used in camera and video connections.
1994: LVDS (Low Voltage Differential Signaling) –
LVDS has been gaining use in the automotive market
as a replacement for most

1983 : CAN (Controller Area Network)
CAN is a shared serial bus running at up to 1Mbps. It was develop
ed by Bosch and standardized in multiple ISO standards.
It has the disadvantages of relatively low bandwidth and being a
shared media.
CAN is used in powertrain, chassis, and body electronics.

2001: LIN (Local Interconnect Network)
It is a serial bus. It runs at 19,200 baud and requires only one
shared wire (instead of the 2 for CAN).
LIN is a master-slave architecture.
Used for body electronics (mirrors, power seats, accessories).

2005: FlexRay
FlexRay is a shared serial bus running at up to 10Mbps.
It has the advantage of having higher bandwidth than CAN, but
the disadvantage of higher cost and being a shared media.
FlexRay is used in high-performance powertrain and safety (drive
-bywire, active suspension, adaptive cruise control).

2012: CANFD
First CAN-FD controller available in 2013.
Similar costs as for classic CAN
Higher bandwidth
Small impact on current SW and applications
Physical layer and structure of topologies can be maintained

Automotive Communication
Technology Data Rate IP Ownership Media Topology Usage

LIN 40kbps LIN Consortium Single wire P2P Body electronics

CAN 1Mbps ISO-11898
Bosch

UTP Shared Power train
(Engine, transmission, ABS)

CAN-FD 2.5Mbps Bosch UTP Shared Power train
(Engine, transmission, ABS)

FlexRay 10Mbps ISO-17458
FlexRay
Consortium

UTP Shared High-perf power train
(safety, drive by wire, active suspe
nsion, ACC)

Technology Data Rate IP Ownership Media Topology Usage

MOST 150Mbps SMSC POF Ring Infotainment

FPDLink LVDS 655Mbps-3
Gbps

TI/National Shield coax P2P Camera/display

Low data rate control

High cost/proprietary

Electronics in Automotive
• More electronics and software
• More distributed, more contention
• 90% of all future innovations will be on
electronics systems

ABS: Antilock Brake System
ACC: Adaptive Cruise Control
BCM: Body Control Module
DoD: Displacement On Demand
ECS: Electronics, Controls, and Software

EGR: Exhaust Gas Recirculation.
GDI: Gas Direct Injection
OBD: Onboard Diagnostics
TCC: Torque Converter Clutch
PT: Powertrain

Forefront of Innovation

System Connection

Subsystem Controls & Features

Vehicle Integration

V
a
lu

e
 f

ro
m

E
le

c
tr

o
n

ic
s
 &

 S
o

ft
w

a
re

1970s 1980s 1990s 2000s 2010
s

2020s

CAESS
2010

JEEP
2015

[source: Qi Zhu,ISPD]

$
1
1
8

2

(+
1
9

6
%

)
$

1
1
8

2

(+
1
9

6
%

)

5
0
 E

C
U

s

(+

1
5

0
%

)
5

0
 E

C
U

s

(+

1
5

0
%

)

2
0
-5

0
 M

 L
in

e
s
 o

f
C

o
d

e

2
0
-5

0
 M

 L
in

e
s
 o

f
C

o
d

e

$
4
0

0

2
0
 E

C
U

s

1
M

 L
O

C

Audi
2018

Challenges in Automotive

$
1
1

8
2

(+

1
9

6
%

)
$

1
1

8
2

(+

1
9

6
%

)

5
0
 E

C
U

s

(+

1
5

0
%

)
5

0
 E

C
U

s

(+

1
5

0
%

)

1
0
0

M
 L

in
e

s
 o

f
C

o
d

e

(+
9
9

0
0

%
)

1
0
0

M
 L

in
e

s
 o

f
C

o
d

e

(+
9
9

0
0

%
)

$
4
0

0

2
0
 E

C
U

s

1
M

 L
O

C

Challenges in Automotive

$
1
1

8
2

(+

1
9

6
%

)
$

1
1

8
2

(+

1
9

6
%

)

5
0
 E

C
U

s

(+

1
5

0
%

)
5

0
 E

C
U

s

(+

1
5

0
%

)

1
0
0

M
 L

in
e

s
 o

f
C

o
d

e

(+
9
9

0
0

%
)

1
0
0

M
 L

in
e

s
 o

f
C

o
d

e

(+
9
9

0
0

%
)

$
4
0

0

2
0
 E

C
U

s

1
M

 L
O

C

• Average of 50‒60 ECUs, 80 chips, and 100‒
300 MBs of binary code in today’s car.

• Some systems like safety critical steer-by-wire
already feature 3–4 million lines of code by the
mselves.

• The highest powered computers in the car are
no longer infotainment systems but intelligent
ECUs powering sensor fusion and machine
learning and consolidated domain controllers

AUTOSAR Architecture: Standards Methodologies

AUTOSAR (Automotive Open

System Architecture)

• Highest real-time requirements

• Lowest computing power

requirements

1980s 1990s 2000s

AUTOSAR (Automotive Open System
Architecture)
Execution Management
•Persistency
•Communication Management
•Platform Health Management
•Diagnostics
Highest computing power requirements

Infotainment Systems and c
onnectivity OS
• Low safety criticality
• No real-time
requirements
• High computing power
• Runs on android or linux

Challenges in Automotive

 More problems in vehicle electronic systems

 Recalls related to electronic systems tripled in past

30 years.

 Hard to diagnose: Debugging the ECUs is difficult,

more than 50% of the failed ECUs passed the testi

ng phase.

 Secure Over-the-Air (OTA) software updates

 Need for Standard Methodologies and tools

 Modeling, analyzing and verifying complex system

behavior with formal models.

 Optimizing performance metrics such as, reliability,

cost, security, energy, extensibility.

Total recall cases, by model year

Threat model of CAN Bus

1970s 1980s 1990s 2000s
ECUs are composed of a processing element connecting to an actuation and a telemetry interface of a com
ponent.
 Hitting the brakes pedal should tell the braking system to actuate the brake disks.
 The interactive dashboard system controlling the climate of the car.

Threat model of CAN Bus

1970s 1980s 1990s 2000s

Stealing Identifiers
 A device broadcasts its

message to the entire network.
 No encryption
 No effort to eavesdrop

the communication.

ECU2ECU1 ECU3

Eavesdropper

Eavesdropping
 A device broadcasts its message to

the entire network.
 No encryption
 No effort to eavesdrop the communication.

ECU1
ID = A

Attacker

ECU2
ID = B

ECU3
ID = C

ID=B

CAN Bus Based Attacks - Denial of Service Attack

1970s 1980s 1990s 2000s

 Malicious CAN node, CAN2 can interrupt the legitimate communication
 between CAN 0 and CAN1. CAN0 is forced to terminate its transmission

Automotive Security -Research Directions

1970s 1980s 1990s 2000s

 New capabilities in hardware and systems
 Accelerated product development drives the need

for early detection of problems
 Market demand for connected vehicles and mobile

applications requires use of new technology and
development practices

 Quality, security and safety become key concerns
for developers.

 Reconfigurable functional units
 Automotive Ethernet.
 Secure Architecture

 Hardware security capabilities
 Accuracy and speedy insight into quality defects and

security vulnerabilities.
 Identification
 Encrypted communication
 secure boot
 Bandwidth

 PUF technologies for authentication.
 Trusted platform module TPM

 Automation
 All manual processes introduce avoidable delays

and opportunity for human failure
 Automation enable focus on quality, security and

safety into System development life cycle
(SDLC).

 Continuously test with depth and speed
 Implement features securely more than adding

on security features.
 Secure code while developers work, rather than

after they’re done – Specific to software.
 Future of CARS

 Connected Cars
 Autonomous vehicles

Automotive Security -Research Directions

1970s 1980s 1990s 2000s

• To get a competitive edge, intelligent vehicle manufacturers must meet demanding communication
requirements, including safety, resilience, security, scalability, fault tolerance, and fast data
transmission.

• Security should be part of the architecture design, embedded in multiple system layers.

• Develop open, flexible architectures for security, safety and mission-critical applications in un-armed v
ehicles UAVs

Automotive Future Communication System Landscape

1970s 1980s 1990s 2000s

Automotive Future Communication System Landscape

1970s 1980s 1990s 2000s

100 Base-Tx Fast Ether
net (IEEE 802.3u)

BroadR-Reach
(OPEN Alliance)

Reduced Pair 1 Gigabit
(IEEE)

Time-triggered Ethernet

A/V Bridging Gen 2

Partial Networking

Video comm Interface

A/V Bridging Gen 1

Energy Efficient Ethernet
(IEEE 802.3ez)

Diagnostics over IP
(ISO 13400)

1st Generation 2nd Generation 3rd Generation
Independent Subsystems and
Diagnostics, ECU Flashing,
Rear-view Cameras

Infotainment and Driver
Assistance Systems

Ethernet as network
backbone

Data Link Layer
Physical Layer

Higher Layer
Protocols

2010 2015 2020

Architecture: Data distribution service

• A data centric middleware
• Data is the interface.
• Data centricity enables interoperation,

scale and integration

• Instead of message centric system
• Point to point
• Client /server
• Publish/subscribe
• Queueing

• The Data Distribution services is the proven
data connectivity standard for the IoT.

DDS API

Distribution Fabric

DDS-RTPS Protocol
Real-Time publish subscribe

Interoperability between applications running on
different implementations

Interoperability between source written for different vendors

Architecture: Data distribution service
 Global data space

 Automatic discovery
 Read and write data in any OS, language,

transport
 Type aware
 Redundant sources/sinks/nets

 No Servers
 QoS control

 Timing, reliability, redundancy ordering
filtering security.

 Connect vehicles to clouds and infrastructure.
 Performance/scale
 Measure in ms or micro seconds
 Or scale > 20+ applications or 10+ teams?
 Or 10k+ data values?

Architecture: System Integration

• Build security in from the
start.

• Data flow level security
• Control read and write

access to each data
item for each function

• Ensures proper
dataflow operation

• Complete protection
• Discovery

authentication
• Data-centric access

control
• Cryptography
• Tagging and logging
• Non-repudiation
• Secure multicast

Hardware Support: Trusted Platform Module

1970s 1980s 1990s 2000s

• Standard hardware secure modules with root of
trust provides an execution environment to

• Root of trust hardware proveds SoCs with
a unique identity.

• Securely create, store and manage
secrets

• Extend trust to other internal and external
entities

• Multistage secure boot validates software
and data integrity.

• Secure authentication/ updates/ storage /
debug enable in-the-field device manage
ment.

• Key management and crypto APIs provide
secure access to cryptographic keys

Hardware Support: Trusted Platform Module

1970s 1980s 1990s 2000s

• Trusted platform modules are cryptographic
processors.

• Supports security functions such as, key
generation, storage, symmetric and
asymmetric encryption engine and hash
algorithms.

• TPM integration into a platform can be found in
the specifications of the Trusted Computing
Group (TCG).

• TPM provides three groups to hold objects.
Each hierarchy serves a different use case:

• Owner – Intended to be used by the IT
dept. of an enterprise or the end user

• Endorsement – Privacy sensitive area, to
hold certification keys.

• Platform – To be used by the platform ma
nufacturer or the vendor.

Hardware Support: TPM Software Stack

1970s 1980s 1990s 2000s

• TPM TCG Software Stack (TPM2-TSS)
is an open source software stack that pro
vides a System API (SAPI) to the TPM
commands defined in the specifications.

• TPM-TSS is implemented as a library in
C language and is composed of function
calls that can be used by client code.

• The software library

• User land device resource manage
ment daemon.

• Tool implementation for TPM struct
ures.

Signing and Data Verification Tool

1970s 1980s 1990s 2000s

Successful Verification

1970s 1980s 1990s 2000s

Failed Verification

1970s 1980s 1990s 2000s

Certification Authority

1970s 1980s 1990s 2000s

IBM T
SS

Public/Privat
e Key Pair

OpenSSL

Key Gene
rator

Primary Ke
y in Persist
ent Storag

e

Certificate

TPM

Intra vehicle communication over CAN-FD

1970s 1980s 1990s 2000s

Intra vehicle communication over CAN-FD

1970s 1980s 1990s 2000s

Intra vehicle communication over CAN-FD

1970s 1980s 1990s 2000s

Intra vehicle communication over CAN-FD

1970s 1980s 1990s 2000s

DEMO

Automotive: FPGA accelerators

1970s 1980s 1990s 2000s

• FPGA based ECUs can integrate security such as data and secure boot transparently at the
network and physical layer.

• The encrypted communication can meet real-time guarantees.

[source: Shreejith et.al, FPT 2014]

Automotive: Secure Boot

1970s 1980s 1990s 2000s

• An HSM provides SoC ICs with unique
identity and secure tamperproof environ
ment.

• Create, store and use secrets critical to
the system.

• Secure bootstrap

• Secure access control

• Secure authentication

• Firmware integrity assurance

• Secure storage

• Secure debug and test access
control

Secure reconfiguration of programmable logic

1970s 1980s 1990s 2000s

DEMO

Automotive: Cryptographic Service Engine

1970s 1980s 1990s 2000s

[Source NXP]

• Check bootloader for integrity and
authenticity.

• Check flash memory for integrity
and authenticity.

• Secure communication and data
acquisition between central ECUs
to Sensor ECUs.

• Random number generator

• Encryption

Automotive: Cryptographic Service Engine

1970s 1980s 1990s 2000s

• Using the server’s stored ECC public
key, each client generates ECDH
symmetric key and sends its public
key encrypted to the server.

• The server verifies the public key of
each node and sends each node a list
of verified public keys of nodes.

• The clients generate ECDH symmetric
keys for each other and are able to
communicate.

[source: Saqib et.al, Asian HOST 2017]

Thank You!!

1970s 1980s 1990s 2000s

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 1 (4/26/18)

PUF-Based Authentication and

Secure Boot for IoT

Professor Jim Plusquellic
ECE, UNM

jimp@ece.unm.edu

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 2 (4/26/18)

IoT Security and Trust Challenges

IoT defined (source wikipedia)

• A network of physical devices, vehicles, home appliances and other items embed-

ded with electronics, software, sensors, actuators and connectivity, which enables

these objects to connect and exchange data

RFID, Home automation, Industrial control (SCADA), vehicle V2V and V2X, smart

buildings and cities, EMS, embedded medical, etc.

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 3 (4/26/18)

IoT Security and Trust Challenges

IoT Threats:

• Spoofing, mascarading, impersonation

• Malicious behavior and back-doors introduced by Hardware Trojans

• Information theft through the network or physical-layer side-channels

• Counterfeits, IC overbuilding and other forms of supply chain subversion

• Sabbatoge to the root-of-trust and illegal firmware updates

Countermeasures:

• Secure authentication

• Hardware Trojan screening methods, design obfuscation and tamper-evident verifi-

cation methods

• Secure firewalls and side-channel-attack resistant logic styles

• Immutable, intrinsic identifiers and hardware metering protocols

• Non-NVM-based key generation and storage, and secure boot protocols

Physical unclonable functions (PUFs) can be used in many of these countermeasures

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 4 (4/26/18)

Physical Unclonable Functions

An inherent and unclonable instance-specific feature of a physical object

Akin to biometric features in humans, such as fingerprints, iris characteristics and

DNA

PUFs take advantage of technical limitations that exist in the physical process of fab-

ricating integrated circuits

Even with extreme control over a fabrication process, no two physically identical

instances of a chip can be created b/c of random and uncontrollable effects

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 5 (4/26/18)

PUFs Role in Information Security

PUFs are designed to generate bitstrings and secret keys for protocols that imple-

ment the basic tenets of information security:

• Confidentiality: Keeping information secret (Encryption)

• Data Integrity: Ensuring information has not been altered (Secure hashing)

• Authentication: Two forms: entity and message: Establishing identity through cor-

roborative evidence (protocols)

• Non-Repudiation: Preventing the denial of previous commitments or actions (digi-

tal signatures)

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 6 (4/26/18)

PUFs Defined

PUF Constructions: What do they look like and what do they leverage?

An intrinsic PUF is defined as a combination of

• A physical source of randomness (Entropy), i.e., an integrated circuit component

that exhibits within-die variations

• A measurement technique that can convert small analog signal differences intro-

duced by chip-to-chip/within-die variations into unique digital bitstrings

The SRAM PUF is the simpliest and requires no design changes

word line

VDD

bit bit

Symmetric
and
identical
as
drawn

Randomly
powers up
as a 0 or 1

0 1

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 7 (4/26/18)

PUF Statistical Metrics

Note that the instance-specific response of a PUF is affected by 1) chip-to-chip and

within-die variations, 2) environmental conditions and3) wear-out effects

PUF responses are subjected to statistical testing to evaluate their:

• Uniqueness: Responses from different different chips are compared

1 0 1 0 0 1 0 1 1 0 (Chip0 bitstring during enrollment under conditions α)

1 1 0 0 0 1 1 1 0 1 (Chip1 bitstring during enrollment under conditions α)

0 1 1 0 0 0 1 0 1 1 = 5/10 = 50% (Inter-chip hamming distance, HDinter, ideal is 50%)

• Randomness: Responses from the same PUF instance using different challenges

NIST statistical tests are typically used

• Reproducibility: Responses from the same PUF instance using the same chal-

lenges but under different environmental conditions

1 0 1 0 0 1 0 1 1 0 (Chip0 bitstring during enrollment under conditions α)

1 0 1 0 1 1 0 1 1 0 (Chip0 bitstring during regeneration under conditions β)

0 0 0 0 1 0 0 0 0 0 = 1/10 = 10% (Intra-chip hamming distance, HDintra, ideal is 0%)

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 8 (4/26/18)

PUF Inter-chip HD Example

With Npuf = 50 chips, the histogram is created from 50*49/2 = 1225 HDinter values:

Note that the distribution is actually characterized as binomial and not Gaussian

The expected standard deviation std of a binomial is given by

Ideal Ave. HD
32,474 bits

Actual Ave. HD
Mean: 32,477 bits
Std. Dev.: 126 bits

HDinter

50.004%

HDintra

2.6%

F. Saqib, M. Areno, J. Aarestad and J.

Plusquellic, "An ASIC Implementation of

a Hardware-Embedded Physical Unclon-

able Function", IET Computers & Digital

Techniques, Vol. 8, Issue 6, Nov. 2014, pp.

288-299

std
binomial

np 1 p–() 64948 0.5• 0.5• 127.4= = =

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 9 (4/26/18)

Entropy and MinEntropy

Randomness is more difficult to evaluate than reliability and uniqueness, and

requires a suite of tests

Entropy and MinEntropy are measures of the disorder or randomness of a random

variable X with probabilities pi, ..., pn, (also measures information content):

For example, assume you analyze a set of 20 binary bits (0111011110101001101)

produced by a random variable and obtain the following ’occurrence’ results:

• 8 0’s (or 8/20 = 0.40)

• 12 1’s (or 12/20 = 0.60)

We compute Entropy and MinEntropy using the above formula as:

Entropy = 0.60*log2(0.60) + 0.40*log2(0.40) = 0.4422 + 0.5288 = 0.971

MinEntropy = -log2(0.60) = 0.7370

H X() p
i
log

2
p

i
i 1=

n

∑–=

H∞ X() min log
2

p
i

–() log
2

max p
i

()()–= =
i=1

n

i
MinEntropy

Entropy

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 10 (4/26/18)

PUF Statistical Metrics for Randomness

There are MANY ways to compute Entropy w.r.t. PUFs, and you will see different

methods used in the literature

Ideal is for PUF-generated bitstrings to have Entropy of 1 across bitstrings and chips

chip/bit # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 H(x)

C1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1.000

C2 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0.993

C3 1 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0.971

C4 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0.993

C5 1 0 0 1 1 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1.000

C6 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1.000

C7 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0.971

C8 0 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0.971

C9 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0.881

C10 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1.000

H(x) 0.97 0.88 0.97 0.97 0.88 1.00 0.97 1.00 0.97 1.00 1.00 0.88 1.00 1.00 0.97 0.47 0.72 0.97 0.88 0.88

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 11 (4/26/18)

PUF Statistical Metrics for Randomness

The NIST Test Suite has 15 tests, several of which are described as follows:

• Frequency Test:

Counts the number of ‘1’ in a bitstring and assesses the closeness of the fraction

of ‘1’s to 0.5 (failing frequency usually means failure of most other tests)

• Block Frequency Test:

Same except bitstring is partitioned into M blocks. Ensures bitstring is ‘locally’

random

• Fourier Transform Test:

Analyzes the peak heights in the frequency spectrum of the bitstring, and tests if

there are periodic features, i.e., repeating patterns close to each other

• Linear Complexity Test:

Analyzes the bitstring to determine the length of the smallest set of LFSRs

needed to reproduce the sequence

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 12 (4/26/18)

NIST Test Suite for Randomness

NIST ’finalAnalysisReport’ using HELP ASIC

50 chips

64,948 bits/chip

The minimum pass rate for each statistical test with the exception of the random

excursion (variant) test is approximately = 47 for a sample size = 50 binary

sequences

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-value P/F Proportion P/F Statistical test

2 4 5 6 7 5 5 5 5 6 0.956 50/50 Frequency

5 6 8 7 3 7 6 2 4 2 0.494 49/50 Block Frequency

4 2 5 6 5 4 8 7 4 5 0.817 50/50 CumulativeSums

4 1 6 7 8 4 3 4 7 6 0.494 50/50 CumulativeSums

12 3 10 7 2 2 4 5 2 3 0.007 47/50 Runs

5 6 5 6 5 6 4 7 5 1 0.851 49/50 LongestRun

9 8 3 4 4 8 4 3 2 5 0.290 50/50 Rank

8 3 4 5 6 4 5 5 7 3 0.851 50/50 FFT

6 1 5 5 8 2 6 6 6 5 0.575 50/50 NonOverlapping

Template

... * ...

2 6 5 7 5 4 6 4 6 5 0.936 50/50 ApproximateEntropy

5 6 5 7 6 3 7 4 6 1 0.699 49/50 Serial

7 6 7 2 2 9 7 4 4 2 0.237 50/50 Serial

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 13 (4/26/18)

Weak PUF vs Strong PUF

The distinction is rooted in the security properties of their challenge-response pairs

One definition of a Strong PUF:

Even after giving a adversary access to the PUF instance for a prolonged period

of time, it is still possible to come up with a challenge that with high probabil-

ity, the adversary does not know the response

This implies that

• The PUF has a very large challenge space, otherwise the adversary can simply

query the PUF with all challenges to learn its complete CRP behavior

• It is infeasible to build an accurate model of the PUF using only a subset of CRPs

to ’train’ the model, as a means of learning its complete CRP behavior

PUFs which do not meet these requirements are called Weak PUFs

In the limit, some PUFs have only a single challenge and are called physically

obfuscated key or POK

We discussed the SRAM PUF earlier that has only one challenge

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 14 (4/26/18)

PUF Usage Scenarios

• Identification

The PUF can be used to generate a ’serial number’ to identify and/or track parts

through manufacturing (the original proposed use by Keith Loftstrom in 1999!)

For manufacturing, uniqueness is the most important metric

A weak PUF is sufficient for this type of low security application

Reliability is not a concern as long as

• Bit flip errors are infrequent, i.e., HDintra is relatively small, otherwise the probabil-

ity of ’aliasing’ gets unacceptably large

• It is possible to use a ’fuzzy match’ criteria after the identifier is generated

• Authentication

The PUF is used to securely identify the chip in which it is embedded to an authority

through corroborative evidence

As we will see when we discuss authentication scenarios, a strong PUF is best

because the PUF inputs and outputs are exposed to the adversary

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 15 (4/26/18)

PUF Usage Scenarios

All three statistical metrics, i.e., uniqueness, randomness and reliability, are impor-

tant for authentication

Some simple schemes relax the reliability metric as we will see

• Encryption

The PUF is used to generate a secret key, e.g., for symmetric encryption algorithms

In typical encryption applications, the key is not revealed outside the chip and there-

fore, a weak PUF can be used (although a strong PUF is better here too)

The inaccessability of the PUF responses makes model-building impossible

However, recent work shows that power analysis attacks can be used to enable

model-building, which argues in favor of using strong PUFs for encryption too

Unfortunately, in contrast to authentication schemes, tolerance to bit flip errors is 0

Even a difference of 1 bit in a 256-bit key completely wrecks communication

between parties because of the avalanche effect

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 16 (4/26/18)

PUF Implementations

There are MANY PUF implementations that have been proposed

A rough characterization is as follows:

• Delay-based PUFs:

Delays along ’matched’ paths (Arbiter)

Ring Oscillator frequencies

Glitches produced along paths within a functional unit

Delays along glitch-free paths within a functional unit (HELP)

• Bi-stable PUFs:

SRAM

Butterfly, Buskeepers

FFs and Latches

• Mixed-Signal PUFs: (These require a specialized analog-to-digital converter: ADC)

Transistor threshold voltage/transconductance

Dynamic/leakage current

Resistance/Capacitance

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 17 (4/26/18)

Arbiter PUF

A specialized structure implements two paths, each of which can be individually

configured using a set of challenge bits

Each of the challenge bits controls a ‘Switch box’ in pass mode or switch mode

The faster path controls the value stored in the Arbiter

The arbiter PUF has an 2n input challenges but the total amount of Entropy is rela-

tively small with 128 switch-boxes, and therefore it is subject to model-building

rising

Switch

Arbiter

box
Switch

box
Switch

box
Switch

box
Switch

box
Switch

box
Switch

box

0 or 1

edge

stimulus:

response

challenge

D Q
0

D Q
1

D Q
0

D Q
1

D Q
1

D Q
0

D Q
0

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 18 (4/26/18)

Metal Resistance PUF

The metal PUF measures voltage drops across polysilicon wires, metal wires and vias

as the source of entropy

An SMC cell from a larger array is selected using column and row select signals

Once selected, a Stimulus-Measure-Circuit (SMC) enables a shorting transistor

(stimulus) which creates a voltage drop across the poly-metal-via stack

Two ’pass gates’ are also enabled that allow voltages to be sensed and measured

shorting
transistor

sense pass gates

upper
 v

olt.
 se

nse

entropy
source

Stimulus-Measure-Circuit (SMC)

lo
w

er
 v

olt.
 se

nse

VDD

GND

column

row select poly/metal/via
entropy source

shared
with

SMCs

select

upper voltage sense

lower voltage sense

VDD

shorting transistor

other

current

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 19 (4/26/18)

Hardware Embedded Delay PUF (HELP)

HELP measures path delays in an on-chip functional unit, e.g., AES, and leverages

random within-die variations in propagation delay as a source of entropy

HELP can be described entirely in an HDL, and therefore can be implemented on

FPGAs

The functional unit (entropy source) is implemented using a specialized logic style

that is hazard-free

This ensures paths remain stable, and can be timed accurately, as TV conditions

vary

HELP is a STRONG PUF and is capable of generating a large # of random bitstrings

Logic gate
implementation
of AES
sbox-mixedcol
datapath component

Input challenge is 2-vector sequence

Output response are path delays
path

delays

Clock strobe
Module

Xilinx DCM

Storage module

16 KB
Block

RAM

PNDiff module

TVComp module

Offset & Mod. module

BitGen. module

Bitstring + helper data

Challenge selection
module

C
o
n

tr
o
l

m
o
d
u

le

(BRAM)

Launch row FFs

Capture row FFs
Clk2

Clk1

Path-Select-
Masks

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 20 (4/26/18)

Hardware Embedded Delay PUF (HELP)

HELP uses a launch-capture timing mechanism to obtain high-resolution path delay

values for combinational logic paths

Path delays can be measured using a clock strobing method

Or using an alternative flash ADC method that also works well

The fine phase shift feature within modern digital clock managers (DCMs) can be

used to incrementally tune a capture clock, Clk2, in a series of launch-capture tests

The integer-based fine phase shift value is used as the digitized path delay

Clk1

Clk2

Launch
FFs with

Capture
FFs with
Clk2

Clk1

∆t ~= 18ps

Clk2

path

path

0

Clk2

0->1

1

Fail

Clk2

path

path

1

Clk2

0->1

0

1st success

fine phase shift
232

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 21 (4/26/18)

Authentication Overview

Authentication refers to the process of ‘verifying the identity of the communicating

principals to one another’

Authentication is typically carried out between

• A prover A, e.g., a hardware token such as a smart card, and

• A verifier B, e.g., a secure server operated by your bank

The verifier B either

• Confirms or accepts the prover’s identity as authentic or

• Terminates without acceptance, i.e., rejects

Authentication protocols can be:

• Unilateral, i.e., from prover to verifier, or it may be mutual

• Privacy preserving to prevent malicious adversaries from tracking instances of

authentications between the prover and verifier over time

• Symmetric in nature, requiring the use of a shared secret

• Asymmetric with the prover and verifier maintaining their own private secrets

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 22 (4/26/18)

PUF-Based Authentication

With the Internet-of-things (IoT), there are a growing number of applications in

which the hardware token is resource-constrained

Therefore, novel authentication techniques are required that are low in cost,

energy and area overhead

PUFs are attractive for authentication in resource-constrained tokens b/c:

• They eliminate (in many proposed authentication protocols) the need for NVM

• A special class of strong PUFs can also reduce area and energy overheads by

reducing the number and type of hardware-instantiated cryptographic primitives

• The application controls the precise generation time of the secret bitstring

• They are tamper-evident, i.e., the entropy source of the PUF is sensitive to invasive

probing attacks

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 23 (4/26/18)

Basic Protocol: Strong PUF with Unprotected Interface

The simplest mechanisms called challenge-response entity authentication exchange

cleartext bitstrings directly, i.e., no cryptographic primitives are used

A PUF whose inputs and outputs can be accessed directly is said to have unprotected

interfaces

Prover (token hti with IDi) Verifier (server)

(Server gens. challenges cj and stores CRPs in DB[IDi])

c
j

TRNG()←

ID
i

(PUF generates response r’n with errors)

r
j

PUF c
j

()=

HD
intra

r
n

r ′
n

,() ε<

Accept if match has HDintra

E
n

ro
ll

m
en

t

c
j

r
j

,() with j 1…n[] and∈

DB ID
i

[] c
n

r
n

,()→

A
u

th
en

ti
ca

ti
o
n

n n 1–=

(Server selects cn)

(CRP is deleted from DB)

c
n

r′
n

PUF c
n

()=

r ′
n

less than noise margin ε

?

c
j

r
j

,() DB ID
i

[]→

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 24 (4/26/18)

Basic Protocol: Strong PUF with Unprotected Interface

Benefits:

It is simple to implement and is very lightweight for the token

The inability of the PUF to precisely reproduce the response ri makes it neces-

sary to implement a error-tolerant matching scheme with HDintra > 0

Drawbacks:

Large values of HDintra increase the chance of impersonation, and act to reduce

the strength of the authentication scheme

A large number of CRPs must be recorded during enrollment

This increases the storage requirements for the verifier, since the worst-case

usage scenario must be accommodated

Or requires periodic re-enrollment at the secure facility

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 25 (4/26/18)

Basic Protocol: Strong PUF with Unprotected Interface

Drawbacks:

The protocol lacks resistance to denial of service attacks, whereby adversaries

purposely deplete the server database

It lacks mutual authentication

It is susceptible to model-building attacks, and therefore is secure only when a

truely strong PUF is used

A growing list of proposed protocols address these short-coming by incorporating

cryptographic primitives on the prover and verifier side

The inclusion of cryptographic primitives enable significant improvements to the

security properties of the protocols

And additionally enable mutual authentication and more efficient methods to

preserve privacy

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 26 (4/26/18)

HELP Authentication Protocol Overview

entity sbox_mixedcol is

 port (

 clk_in1: in std_logic;

 clk_in2: in std_logic;

 FCLK_CLK0: in std_logic;

 ...

VHDL description of Entropy source

Cadence synthesisGlitch-
free
std. cell
library

Netlist

Automatic Test
Pattern Generation

001010100101...

110001010001...

001001010001...

Challenges

Hazard-free conversion

Characterization

PNR0 PNRn PNF0 PNFm

C1
C2

C3

C30

Secure Server Database

PNR0 PNR1 PNRx PNF0 PNF1 PNFxPNR2 PNF2

380.1 294.8 366.9 364.0 328.0 328.0288.0 276.2C1
C2

C3

Cn

366.6 282.8 352.7 374.3 334.6 337.1278.6 286.1

366.3 288.4 355.7 372.7 336.4 338.0280.8 282.3

387.5 301.2 373.5 362.9 325.18 323.7292.3 272.1

Enrollment of all chips at 25oC, 1.00V

Subset of 30 chips

Analysis of TVN and WID, challenge set selection

25oC, 1.00V

PNR0 PNRn PNF0 PNFm

100oC, 1.05V

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 27 (4/26/18)

HELP Authentication Protocol

PN
y

{ } PUF c
x

{ }()=
c

x
{ }

PN
y

{ }

PN
j

{ }

DB ID
i

[] PN
j

{ }()←

c
k

{ } c
k

{ } Server←PN
j

{ } PUF c
k

{ }()=

ID
i

ServerGenID()←

SelectATPG ID
i

() c
x

{ }→

DB ID
i

[] c
x

PN
y

,{ }()←

ID Phase

Authen Phase

n
1

For i in DB[IDi]

n
1

TRNG()←

m n
1

n
2

⊕←

mPNDco′
j

{ } AP PUF c
k

{ }() S µ
ref

Rng
ref

Mod O
k

, , , , ,()←

bss′ h′,() SHBG mPNDco′
j

{ } Mar.,()← bss′ h′,

bss″ bss=
?

(Search for match)

n
2

TRNG()←

c
k

{ } O
k

{ },

Mod S µ
ref

Rng
ref

Mar., , , ,() SelParam m()←

ID
i

c
k

{ } Server←

mPNDco
j

{ }
i

AP PN
j

{ }
i

S µ
ref

Rng
ref

Mod O
k

, , , , ,()←

If match is found, proceed to

bss bss″,() DHBG mPNDco
j

{ }
i

Mar. bss′ h′, , ,()←

Prover (token hti with IDi) Verifier (server)

ID Phase

m n
1

n
2

⊕←

Mod S µ
ref

Rng
ref

Mar., , , ,() SelParam m()←

E
n

ro
ll

m
en

t
A

u
th

en
ti

ca
ti

o
nn

2

verifier authentication

O
k

{ } Server←

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 28 (4/26/18)

Secure Boot

Methods that guarantee that the system boots with an authorized FPGA bitstream

and/or BootROM code establish the ’root of trust’ in the system

The focus of our discussion will be on secure boot of FPGAs

In Xilinx FPGAs, the root of trust is the stored key

Keys can be stored in Battery Backed RAMs (BBRAM) or using eFUSE

The drawbacks of these on-chip digital storage mechanisms include

• BBRAM require a battery to be installed on the system board and therefore increase

system cost

• The batteries for BBRAM also have a limited lifetime and therefore complicate sys-

tem maintenance

• eFUSE is one-time-programmable (OTP) and therefore reduce flexibility in key

management

• eFUSE keys can be read-out using, e.g., scanning electron microscopes (SEM)

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 29 (4/26/18)

Xilinx Secure Boot Process

The BBRAM or eFUSE keys are used as the root of trust in the Xilinx secure boot

process

• In a secure facility, the Xilinx CAD tools can be used to encrypt the bitstream using

a randomly generated or user-specified key

• The decryption key is loaded via JTAG at a secure facility into the eFUSE or

BBRAM

• The in-field secure boot process first determines if the external bitstream includes

an encrypted-bitstream indicator

If so, the on-chip 256-bit AES engine decrypts the bitstream using cipher block

chaining (CBC) mode of AES along with the eFUSE or BBRAM key

CBC mode XORs the previous block ciphertext with the next block plaintext

before encrypting the current block (decryption reverses this process)

This forces different ciphertexts for replicated components in the plaintext

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 30 (4/26/18)

Xilinx Secure Boot Process

• Authentication is used to ensure data integrity of the bitstream using SHA-256

where a 256-bit keyed MAC (HMAC) is computed for the bitstream

The HMAC is designed to prevent bit-flip attacks and other types of fault injec-

tion attacks

Therefore, the HMAC authenticates the origin of the bitstream and detects any

type of tamper

The HMAC of the unencrypted bitstream is computed in a secure facility and

embedded with the key in the bitstream, which is then encrypted by AES

During in-field boot, a second HMAC is computed as the bitstream is decrypted

and compared with the HMAC embedded in the decrypted bitstream

If the comparison fails, the FPGA does not become active

The secure boot process provides confidentiality, data integrity and authentication

It detects tamper and attempts to program FPGA with a non-authentic bitstream

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 31 (4/26/18)

Xilinx SoC Secure Boot Process

Xilinx FPGA SoCs, e.g., Zynq series, use an asymmetric (public-private) authentica-

tion (digital signature) scheme in the secure boot process

Here, we see bootgen computes a SHA-256 hash of the encrypted first stage boot

loader (FSBL) and a digital signature is then computed using the RSA private key

Signature verification is carried out by the Zynq chip using the public key to recover

the hash, which is compared with a locally computed hash of the encrypted FSBL

Leveraging Asymmetric Authenticationto Enhance Security-Critical Applications Using Zynq-7000 All Programmable SoCs,WP468 (v1.0) October 20, 2015

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 32 (4/26/18)

Xilinx SoC Secure Boot Process

The first stage boot loader (FSBL) is authenticated as shown BEFORE it is decrypted

and executed by the PS-side

If authentication succeeds, the FSBL is decrypted by a PL-side AES engine using a

key stored in the BBRAM or eFUSE

RSA-2048 signature verification algorithm resides in the PS-side BootROM, which is

a mask-programmed, hardwired, immutable memory

Neither the private or public keys are stored on the FPGA

Instead, a 256-bit hash of the public key is programmed into the eFUSE array

The FSBL then becomes the root of trust in the boot process

PS-side images and PL configurations can then be loaded by the FSBL

The user must include decryption and authentication functions in the FSBL to

ensure these subsequent components of the boot process are secure

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 33 (4/26/18)

Xilinx Secure Boot Process

Secure boot requires the boot process to begin with a root of trust, and then carry out

authentication in each of the subsequent stages

As indicated above, Xilinx FPGA SoCs use public key cryptography, i.e., RSA, for

authentication and attestation of FSBL and other configuration files

And a hardwired 256-bit AES engine and HMAC to securely decrypt and

authenticate boot images on chip using a BBRAM or eFUSE embedded key

Although the Xilinx FPGA SoC root of trust begins with the RSA authenticated

FSBL, which does not use an embedded key, decryption of the FSBL does

Moreover, the Xilinx non-SoC PL-side boots, as discussed earlier, use eFUSE and

BBRAM for bitstream decryption

In either case, the root of trust cannot be expanded to include PS-side images and/

or PL configuration data without keeping the embedded key confidential

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 34 (4/26/18)

Xilinx Boot Process

Let’s examine the underlying steps of the Xilinx boot process and then look at an

alternative self-authenticating PUF-based solution

The Xilinx BootROM loads the FSBL from an external NVM to DDR (DRAM)

The FSBL programs the PL side and then reads the second stage boot loader (U-

Boot), which is copied to DDR, and passes control to U-Boot

U-Boot loads the OS images, which includes a bare-metal application, or the Linux

OS, embedded software applications and data files

Zynq 7020 SoC

Zynq BootROM loads

FSBL from Boot image

FSBL programs PL and

passes control to U-Boot

U-Boot loads the OS

images (Linux, software
apps. etc.)

External NVM

Boot Image

1) FSBL.elf
2) Encrypted bitstream
3) U-Boot.elf
4) Linux kernel
5) Device tree
6) Root file system
7) Data files/apps.

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 35 (4/26/18)

Bullet-Proof Boot for FPGAs (BulletProoF) Process

The BulletProoF boot process does not use any of the security features provided by

Xilinx, i.e., it is self-contained and self-authenticaing

The first step is identical to the existing

boot process

The PL component that is programmed

into the PL side by the FSBL is the

unencrypted BulletProoF bitstream

The FSBL then passes control to Bullet-

ProoF and blocks

BulletProoF reads configuration data

using ICAP and helper data from an

NVM and carries out key regeneration

The key is transferred to an embedded PL-side AES engine

Zynq 7020 SoC

Zynq BootROM loads

FSBL from Boot image

FSBL programs PL with

BulletProoF bitstream

External NVM

BulletProoF generates decrypt.

key using data from ICAP
and transfers key directly

to PL AES engine

BulletProoF reads encrypted components, U-Boot, Linux,

BulletProoF uses partial dynamic

PS side boots Linux and

reconfiguration to program
unused PL regions and

pass?

runs apps, etc.

Y

N

FPGA deactivates

 device tree, etc. from external NVM, decrypts and
 performs integrity check on generated key

transfers software images to DDR

Boot Image

1) FLBL.elf

2) BulletProoF bitstream and

5) U-Boot.elf (encrypted)
6) Linux kernel (encrypted)
7) Device tree (encrypted)
8) Root file sys. (encrypted)
9) Data & apps. (encrypted)

helper data (unencrypted)

3) key integrity ck (encrypted)

4) App bitstream (encrypted)

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 36 (4/26/18)

Bullet-Proof Boot for FPGAs (BulletProoF) Process

BulletProoF reads the encrypted second

stage boot image components labeled as

components 3 through 9 from external

NVM and transfers them to the AES

engine

An integrity check is performed at the

beginning of the decryption process as a

mechanism to determine if the proper

key was regenerated

The first component decrypted is the key

integrity check component (labeled 3)

This component can be an arbitrary string or a secure hash of, e.g., U-Boot.elf, that is

encrypted during enrollment and stored in the external NVM

Zynq 7020 SoC

Zynq BootROM loads

FSBL from Boot image

FSBL programs PL with

BulletProoF bitstream

External NVM

BulletProoF generates decrypt.

key using data from ICAP
and transfers key directly

to PL AES engine

BulletProoF reads encrypted components, U-Boot, Linux,

BulletProoF uses partial dynamic

PS side boots Linux and

reconfiguration to program
unused PL regions and

pass?

runs apps, etc.

Y

N

FPGA deactivates

 device tree, etc. from external NVM, decrypts and
 performs integrity check on generated key

transfers software images to DDR

Boot Image

1) FLBL.elf

2) BulletProoF bitstream and

5) U-Boot.elf (encrypted)
6) Linux kernel (encrypted)
7) Device tree (encrypted)
8) Root file sys. (encrypted)
9) Data & apps. (encrypted)

helper data (unencrypted)

3) key integrity ck (encrypted)

4) App bitstream (encrypted)

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 37 (4/26/18)

Bullet-Proof Boot for FPGAs (BulletProoF) Process

An unencrypted version of the key integ-

rity check component is also stored as a

constant in the BulletProoF bitstream

The integrity of the decryption key is

checked by comparing the decrypted

version with the BulletProoF version

If they match, then the integrity check

passes and the boot process continues

Otherwise, the FPGA is deactivated and

secure boot fails

If the integrity check passes, BulletProoF then decrypts components 4 through 9,

starting with the application (App) bitstream

Zynq 7020 SoC

Zynq BootROM loads

FSBL from Boot image

FSBL programs PL with

BulletProoF bitstream

External NVM

BulletProoF generates decrypt.

key using data from ICAP
and transfers key directly

to PL AES engine

BulletProoF reads encrypted components, U-Boot, Linux,

BulletProoF uses partial dynamic

PS side boots Linux and

reconfiguration to program
unused PL regions and

pass?

runs apps, etc.

Y

N

FPGA deactivates

 device tree, etc. from external NVM, decrypts and
 performs integrity check on generated key

transfers software images to DDR

Boot Image

1) FLBL.elf

2) BulletProoF bitstream and

5) U-Boot.elf (encrypted)
6) Linux kernel (encrypted)
7) Device tree (encrypted)
8) Root file sys. (encrypted)
9) Data & apps. (encrypted)

helper data (unencrypted)

3) key integrity ck (encrypted)

4) App bitstream (encrypted)

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 38 (4/26/18)

Bullet-Proof Boot for FPGAs (BulletProoF) Process

BulletProoF uses the HELP PUF to generate the decryption key as a mechanism to

eliminate the vulnerabilities associated with on-chip key storage

Key generation using PUFs starts with an enrollment phase carried out in a secure

environment

The encryption key is generated using configuration data read from ICAP, which

is then used to encrypt the 2nd stage boot images

A special enrollment version of BulletProoF generates the key internally and

transfers helper data off of the FPGA

Which is stored unencrypted in the external NVM

The internally generated key is then used to encrypt the other components of the

NVM by configuring AES in encryption mode

 The enrollment version performs encryption while the in-field version performs

decryption, but the two versions are otherwise identical

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 39 (4/26/18)

Security Properties of BulletProof

The proposed system has the following security properties

• The enrollment and regeneration processes never reveal the key outside the FPGA,

requiring the adversary to use physical, side-channel-based attacks to steal the key

• Any type of tamper with the unencrypted helper data by an adversary will only pre-

vent the key from being regenerated and a subsequent failure of boot process

Note that it is always possible to tamper with the contents stored in the external

NVM, independent of whether it is encrypted or not

• The HELP PUF discussed earlier implements a helper data scheme that does not

leak information about the key

• The HELP PUF to designed to self-authenticate itself, thereby detecting any type of

tamper with unencrypted version of the BulletProoF bitstream

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 40 (4/26/18)

BulletProof Architecture

BulletProof derives challenges for the HELP PUF using the FPGA configuration data

read directly from the ICAP interface

Since the FPGA is programmed with the unencrypted BulletProof bitstream, this rep-

resents a form of self-authentication

 The source of entropy of the HELP PUF is an implementation of the SHA-3 algo-

rithm

The bitstream configuration data is hashed using SHA-3 configured in Mode 1 (func-

tional mode)

Periodically, the current state of the SHA-3 hash is used as a challenge to SHA-3 con-

figured in Mode 2 (PUF mode) to generate timing data for key generation

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 41 (4/26/18)

BulletProof Architecture

The configuration data within the PL-side of the FPGA is shown overlaid on top of

the BulletProof flow diagram

The SHA-3 blocks are shown as two separate blocks but are in fact one block

The BulletProof architecture is designed such that challenges are launched directly

from the ICAP interface register to prevent a specific type of RE attack

01011...

slice config data

11011... 00100... 11101... 11101...
00111...
11111...

11011...

ICAP interface

SHA-3
functional mode

SHA-3
PUF mode

1 Read slice config data

2 Use as input to SHA-3

3 Compute digest

4 Use digests as
challenges for HELP

BRAM

5 Store digitized
path delays

151 230

16-bit digitized
path delays

97 349

HELP Algorithm
decrypt key

11010110001... AES

6 Generate key

7 Check key

Decrypt 2nd stage

To PL
and DDR

FPGA Programmable Logic

External NVM

Helper data Encrypted SSBI

boot images (SSBI)

1 Enroll/Boot config. bit

Boot
Boot

Enroll

8

Un-Encrypted SSBI

Enroll

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 42 (4/26/18)

BulletProof Architecture

The paths between the ICAP and SHA-3 are timed because of the following reverse

engineering attack scenario

We must guarantee that the configuration data used as input to the SHA-3 originates

from the ICAP interface

Otherwise, the adversary can create a route as shown and then change the on-

chip version of BulletProof to leak the key off-chip

01011...

slice config data

11011... 00100... 11101... 11101...
00111...
11111...

11011...

ICAP interface

SHA-3
functional mode

SHA-3
PUF mode

1 Read slice config data

2 Use as input to SHA-3

3 Compute digest

4 Use digests as
challenges for HELP

BRAM

5 Store digitized
path delays

151 230

16-bit digitized
path delays

97 349

HELP Algorithm
decrypt key

11010110001... AES

6 Generate key

7 Check key

Decrypt 2nd stage

To PL
and DDR

FPGA Programmable Logic

External NVM

Helper data Encrypted SSBI

boot images (SSBI)

1 Enroll/Boot config. bit

Boot
Boot

Enroll

8

Un-Encrypted SSBI

Enroll

Adversary modifies BulletProof
to create a route off-chip for
streaming in the ’legitimate’
configuration data

Decryption key leakage
channel

HOST 2018 PUF-based Authentication and Secure Boot for IoT

ECE UNM 43 (4/26/18)

Time-to-Digital Converter Alternative to Xilinx MMCM

The original clock strobing method for timing paths can be replaced with a time-to-

digital converter (TDC) that leverages high-speed carry chains on the FPGA

The TDC timing engine replaces the Xilinx MMCM, and when used with a ring

oscillator as the clock source, prevents attacks that attempt to stop the clock

FF

CC0

1
2
-t

o
-1

 M
U

X

Major Phase ShiftV1

V2

SHA-3 combo logic
(functional unit)

BUF0

3
2
-t

o
-1

 M
U

X

64-to-1 MUX

Test Paths

1
0

Calsel

SysClk

Carry Chain

MPSClk
BUF

tree

Vselect

Fselect

MPSsel

1
0

Vselect

M
P

S
C

lk

carry

path

T
h
erm

R
eg

D
ec

o
d
er TCval

Launch FFs

Time-to-digital converter (TDC)

0

11

TPsel

SWcon

BUF1

BUF2

BUF3

BUF49

SW28

SW3

SW2

SW1

SW0

SW29

SW30

SW31

CC1

CC2

CC3

CC124

CC125

CC126

CC127

SysClk

MPSClk

Reg.

32

MPSClk

path

carry

ThermReg FFs

CARRY4

	Host 2018 Fareena Saqib-T6
	T6-IoT_Hw_securityTrust_challenges

