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Outline

* Motivation examples
* Design abstraction levels

* Relevant technologies of interest for fault attacks
* Timing violations
* Noise injection

* Equipment for practical fault attacks

* Examples of fault attack experiments



Security Concerns

Credit card

\\

Implanted device



A Practical Example

Computer Virtex Il Pro FPGA Smart Card
1SO/IEC
7816-3 ®
—
Clock signaJ
(’l'!(\h Cycle Instruction Opcode (bin)
period ‘
- i NOP 0000 0000 0000 0000
- i+1 EOR R15,R5 00100100 1111 0101
< 59 ns i+1 NOP 0000 0000 0000 0000

J. Balasch, FTDD'"11.

Glitch injection in Clock

A target platform a MCU -
ATMegal63 microcontroller

* FPGA is used to generate the
clock for MCU

* Due to the glitch, the
instruction EOR R15, R5 never
executed

— MCU does not have enough time
to load new command from
program memory



Various Ciphers

* Ancient cryptography
* Block cipher
e Stream cipher

" ENCRYPTIONROUND

0o 1 2 S[i]+S[j] i j 253 254 255
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Stream cipher: RC4
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SubBytes
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AddRoundKey
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Block cipher: AES

X Nr-1
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A single-rotor Hebern machine



Cracking Cryptographic Key

s

56-bit (DES)  7.2x1016
128-bit (AES)  3.4x1038
192-bit (AES)  6.2x1057
256-bit (AES)  1.1x1077

[1] M. Arora, online, July 2012.

[2] Seagate, Technology paper, 2008. 9



Abstract Levels in Cryptographic Hardware
Design Process

Protocols
I Crypto-

graphic

Arithmetic .
y r I primitives
RTL (ALU,
A Logic registers, &
memory)
Transistor (gates &
flip-flops)

D. Karaklajic, TVLSI'13. 10



Fault Attack on Cryptosystems

e Goal: retrieve the crypto key

* Active attacks against cryptographic implementations
A fault can cause errors = An errors can be exploited to expose secrets

plaintext

—
Encryption key

Encryption

ciphertext

Sender \

>

Decryption

Recovered

plaintext
—

Decryption key

Receiver
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Fault Attack for Key Extraction

Plainte;
Cryptographic - I * -
4_, ey Fault-free version: a xor key =Y
l l Faulty version: a’ xor key =Y’
Original Faulty l
Ciphertext Ciphertext
| key =axorY

Process of retrieving key using
fault ciphertext and original
\! ciphertext *

Cryptanalysis



Fault Attack Flow

Intentionally inject faults
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Physical Implementation Procedure for Fault Attacks




Non-intentional Fault vs. Intentional Fault

e Random faults are non-intentional faults
— External source
— Internal source

* Faults induced by fault attack are intentional faults

Impact scope Fault effect Attack means
 Global attack  Timing violations * Non-invasive attack
* Local attack * Noise injection * Semi-invasive attack

* Fully Invasive attack

15



Non-Intentional Faults on Integrated Circuits

Reliability

Permanent
Faults

Intermittent
Faults

Transient
Faults

R. Baumann, IEEE Design & Test of Computers’05.
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Source of Transient Faults

[1]

Oxide

Insulation Gate

Package

Source

Neutrons ) "
,‘

Protons
‘Electrons

Alpha-particles
Betta-particles
Gamma-particles

i o iy o e o o

* Cellular telephones * Radar systems
[1] https://lwww.hep.ucl.ac.uk/creamtea/ [3] M. J. Gadlage, TNS'11. 17

[2] S. Kumar, FDTC'12. [4] B. Narasimham, TNS’07.



Source of Permanent Faults

Depletion of atoms (Voids):

~  Slow reduction of
connectivity
~ Interconnect failure

Deposition of atoms
(Hillocks, Whisker):

~  Short cuts

Hillocks

20.0kV X20.0k ‘1,580

H. Pahlevanzadeh, PhD thesis, 2015.
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Non-intentional Fault vs. Intentional Fault

* Faults induced by fault attack are intentional faults

Impact scope Fault effect Attack means
 Global attack  Timing violations * Non-invasive attack
* Local attack * Noise injection * Semi-invasive attack

* Fully Invasive attack

19



Global Attack vs. Local Attack

* Disturb all the entire * Target a specific zone of the
netlist/chip simultaneously components’ surface, rear or front
e Attack methods e Attack methods
— Over-clocking — A laser beam
— Under-powering — A particle source
— Heating — Strong eddy currents
Featre | Global attack | Localattack |
Cost in equipment Low High
Required expertise low High
Easiness of detectability Yes No
Controllability in space No Yes
Controllability in time Yes Yes

S. Guilley, Springer’12. 20



Fault Effect: Timing Violation

* Timing violation includes setup time or hold time violation
Normallperiod Glitch Post-lglitch

f e \
inputs =), outputs J
+ + \ -
pr?stent next / N \E/ \
State state o S ?
Tn Tg Tn-Tg

Glitch injected in clock

CLK_ : s D Q ) §: D Q
I\ I , ] ,
. T . Q — Q

|
[
|
T > ch + Tlogic + Tsu I Setup time violation
f clock | A

21



Fault Effect: Noise Injection

* A laser beam and an electromagnetic field can generate a transient
pulse, forming a transient fault

Drain
Laser AC WA electromagnetic ldg
colL field
k... — n* diffusion j C" —O[ PYIOS

= iE =% In 7{ Out
+ " currents \ :
g — NMos  “Sr- CL
+ |+ P Substract |

DUT —— e
+ |+ gnd gnd

M. Agoyan, PASTIS'10. 22



Non-invasive Attack

* Do not have physical damage to device
* Modify working conditions
* Moderate knowledge/equipment

Clock glitches Under-powering Voltage spikes

F: fetch \ ‘
E: execute i i+1j+2 i+3 i+a s i :MM,UM\' ‘WMWWM,M

e TLPLIT » Ta’

NSTRT K F X £ > |M = I ,

INSTR. 2 < F >z‘; d HN ‘ H

INSTR. 3

INSTR. 4 F e D

INSTR. 5 Rl - Time

J. Balasch et al., FDTC, 2011. J. Balasch, CT-RSA’12. M. Hutter, CHES’12.

Temperature

M. Hutter, CARDIS’13.
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Semi-invasive Attack

* Chip de-capsulation
* Milling, etching, cleaning
» Affordable equipment

808nm front side
shield

i i -

substrate

1064nm back side

Woudenberg, FDTC’12.

traviolet shortwave
gamma X-rays | rays ‘ infrared radar Y AM
rays rays

- o~
10" 10* 10X ~10° 100 '~ 10 1 10*  10*

——
- ~ . Wavelength (meters)
- Visible Light T~

400 500 600 700
Wavelength (nanometers)
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Fully Invasive Attacks

e Delayer or modify the chip
* Microprobe and internal fault injection

* Expensive equipment

http://en.wikipedia.org/wiki/File:Yamaha_YM3812
_audio_IC_decapsulated.jpg

S. Skorobogatov, HWA'11.
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Physical
implementation
of fault injection

Fault attack
model

26



Feasibility of Fault Attacks
FaultAttack | Requirementson Faultinjection

Fault Fault Fault Injection | Fault Injection Fault
Granularity Type Space Timing Duration
Diff. fault attack RIisRWelge Random Loose control Loose control Transient
Attacks on Strong control, | Strong control Transient,
Loose control Permanent

program flow
Algorithm Bit, word, Bit flip, Strong control, Strong control, Transient,
specific attack REHELIE set value Loose control Loose control Permanent

Safe-error Strong control, | Strong control Transient
attacks Loose control

D. Karaklajic, TVLSI’13.
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Laser Injection Station

Thanks to Dr. David Naccache, Vice President,
Gemplus Card International



CLIO Glitch Injector

* Induce errors in the device

* Perform encryption with and without
presence of fault

* Recover sensitive information

D. Naccache, IACR’04.



VC Glitcher

Glitch Amplifier

Diode
Laser Station

1. Hardware control 2. Perturbation 3.DFA
= icWaves control == Glitch parameters == DES
= Test object control == Logging - AES
== Oscilloscope control == Vsualisation - RSA

== Analyss
== Flinstruction set

Source: www.riscure.com

Inspector Fl with VC Glitcher, Glitch Amplifier and Diode Laser Station

30



Experimental Setups for Clock Glitches

* DEO Nano FPGA
* Target device - ATMega328p

* |f glitch works then INFINITE_LOOP1 and
INFINITE_LOOP2 should exit and run the normal
program

START:

BSF LED1
BCF LED2

L =
1 INFINITE_* 1
I GOTO NFSAITE_LOOP1 :

P - - -

1 INFINITE_L* 1
: GOTO TE_LOOP2 1

GOTO START

Demo example to insert the clock glitch

31

B. Giller, BlackHat’15.



Laser Station 2

e Lab station 2 can perform advanced laser
fault attacks

* It contains powerful Red and NIR diode
lasers

* The special set of lasers with dedicated
optics helps in precise fault injection

* The powerful laser can penetrate through
the gaps in the shielding commonly used
in today’s secure chips

Laser Station 2

www.riscure.com
32



Experimental Setup for Optical Attacks

* The setup contains
- Wentworth Labs MP-901 manual prober
- Photoflash lamp (a Vivitar 550FD)
- The test setup with the microcontroller
- PIC16F84 in a test socket [2]

Wentworth Labs MP-901 manual

prober for optical attacks [
[1] S. Skorobogatov, CHES'02.

[2] S. Skorobogatov, FDTC’10.
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Example of an Optical Attack

" Ty T ® K 2 e |f the transistor T3 and T4
L i ™= could be opened for a very
A i
" L n MR A o short time by an external
GO UG J stimulus (in this case optical
ves 3 4 TSWTG source - flash), then it could

cause the flip-flop to change
the state

Circuit structure and layout of a six-transistor SRAM cell

S. Skorobogatov, CHES’02. 34




Experimental Setups for Under-powering or
Power Spikes

 Remotely controlled power supply

providing successively values of Vcc o
—]

* Smart card with protection of AES K

e AES fails when Vcc is lower than 800mV

* The tool generates glitches
* The chip is connected to computer

[2]

[1] N. Selmane, EDCC’08. 35
[2] Kim C.H., WISTP’07.




Program Counter Tampered by a Power Spike

* Power spike tampers with the program counter

* Pointing to unexpected instruction

* Original function being corrupted PC

Corrupted PC

ADD R1, R2, R3

MUL R4, R1, R3

LOAD R2, 10(R4)

SUB R5, R2, R3

BEQ R5, R1, -50

SKIPPED!

36



Example of How Power Spike will Tamper with
a Loop Bound

e Corrupted PC could lead to infinite loop

* Branch target address corruption causes incorrect loop bound

: Condition
. li sssss
ADD R1,R1, #4 <-| 2y :E—
1 _ Adder
—PC 5|  ADDR2R2 #4 | INFINITE
A~ I LOOP' PC+(-60) PC+(-80) o | Instruction | g g4 PIPELINE eee
----- »| BEQRLR2,-2  f- g " wemory M e
Corrupted PC /:\
. NORMAL A
¢ FLOW

37



Experimental Setup for Temperature Attack

* Target: ATmegal62 AVR microcontroller

* Temperature measuring through PT100
« AD693 amplifier for accurate measurements (0~140°C)

* PC controls measuring process (e.g. MATLAB)

ADG693 DC A\ 26V Power
Amplifier 3000 } \r Supply

PT100

ATmegal62 .. :
Digital- Oscilloscope

control

il
I

I M
i

|

'11. m
i storage

i oscilloscope

ilv

38
M. Hutter, CARDIS’13.
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Attacks on Embedded Software

>l 1/0 MEM CPU

Embedded Software assumes execution is correct

Incorrect execution as starting point for attack
- Privilege Escalation
- Information Leakage



Escalation & Leakage

= Adversarial Control of Critical Decisions

1f (! access allowed )
abort ( );

= Disclosure of Secret Data & Dependencies

B

rl if (key bit)
out = f(rl);
else
out = £ (r0);

key bit leaks through out



Triggering Incorrect Execution

>
| 1/0 MEM CPU }

Input/Output Attacker Input/Output Data Software Bugs

Memory Attacker Application/Task Image Lack of Mem lIsolation

Hardware Attacker Instruction Opcode Modification

Instruction Execution Micro-Architecture
Circuit Timing, Threshold Levels

Environment Operating Conditions

this tutorial
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Anatomy of a Fault Attack

t 1. Fault Attack Design

Fault Target and Fault Model

Defined by
Fault Injection Method Security (Attack)
Fault Exploitation Method Objective

2. Fault Attack Implementation

Fault Injection

Fault Manifestation

Fault Propagation Constrained by
_ Implementation

Fault Observation

Fault Exploitation



Anatomy of a Fault Attack

1‘ electrical transient

Timing Power EM Heating Light

Physical Level g2 3 Ll :i—_ Fault Injection

11



Anatomy of a Fault Attack

1‘ faulty bits

Logic Gates Memory Cells Flip Flops

Circuit Level <|:j }_@_{ @

electrical transient

Timing Power EM Heating Light . .
Physical Level NigEs 3 ﬂ '( Fault Injection

Fault Manifestation

12



Anatomy of a Fault Attack

13

Hardware

Micro-Architecture
Level

Circuit Level

Physical Level

1‘ faulty micro-op

Decode Execute

=
S 2 o
@\ [ Instruction | &} [Status Regs | )5
=|| Memory |2\ Register File

Boot ROM Data Mem

1‘ faulty bits

Logic Gates Memory Cells Flip Flops

{j@@%

electrical transient

Timing Power EM Heating Light
T4 3 0 f {'

Fault Propagation

Fault Manifestation

Fault Injection



Anatomy of a Fault Attack

14

Application
oS
Firmware

Software

Hardware

Micro-Architecture
Level

Circuit Level

Physical Level

[

int verify(S,P){ S \
intr; S p Faulty
if (S=P) " Control Flow

r=1; and/or
else (3) (4)DataFlow

4 r=0;

5

returnr r r
) f —

w N

1‘ faulty instruction
Instruction Set Architecture =—

1‘ faulty micro-op

Decode Execute

Datapath

< 5 T \L v

@\ | Instruction | p

=|| Memory |2\ Register File
Boot ROM Data Mem

1‘ faulty bits

Logic Gates Memory Cells Flip Flops

{j@@%

electrical transient

Timing Power EM Heating Light
T4 3 0 f {'

Fault Observation

Fault Propagation

Fault Manifestation

Fault Injection



Anatomy of a Fault Attack
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Application
oS
Firmware

Software

Hardware

Micro-Architecture
Level

Circuit Level

Physical Level

[

int verify(S,P){ S \
intr; S p Faulty
if (S=P) " Control Flow

r=1; and/or
else (3) (4)DataFlow

4 r=0;

5

returnr r r
) f —

w N

1‘ faulty instruction
Instruction Set Architecture =—

1‘ faulty micro-op

Decode Execute

Datapath

< 5 T \L v

@\ | Instruction | p

=|| Memory |2\ Register File
Boot ROM Data Mem

1‘ faulty bits

Logic Gates Memory Cells Flip Flops

{j@@%

electrical transient

Timing Power EM Heating Light
T4 3 0 f {'

Fault Exploitation

)

Fault Observation

Fault Propagation

Fault Manifestation

Fault Injection
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Common Fault Exploitation

* Cryptanalysis using fault injection
 Differential Fault Analysis
e Biased Fault Analysis
e Safe Error Analysis
* Algorithm-specific Fault Analysis

* Fault-aided Side-channel Analysis
* Fault-enabled Logical Attacks

* Fault-aided Reverse Engineering



Common Fault Exploitation

* Cryptanalysis using fault injection
e Differential Fault Analysis
e Biased Fault Analysis
e Safe Error Analysis
* Algorithm-specific Fault Analysis

* Fault-aided Side-channel Analysis
* Fault-enabled Logical Attacks
* Fault-aided Reverse Engineering



Differential Fault Analysis
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Bit-flip Attack on AES

{ Seiiwonss
wores é%?%?léééééééééé
. NANA

o %%%%2%%%%%%%%%%%

A bit-flip results in a faulty cipher



Bit-flip Attack on AES

Fault Differential

c = sbox(v) ® k
c' =sbox(v') ® k
Hence A =c @ c' = sbox(v) @ sbox(v')

Fault Analysis

Reconstruct v by analyzing A
Once we know v, we find the last
round-key as:

k = sbox(v) @ ¢

32 bit-flip faults in round 10 disclose entire key

cdc



Classic DFA

Crvot . Random Byte DEA
ryptographic Random Bit

: Fault Model anaom bl
Algorithm » Chosen Bit » C,C,C" .. —-K

[Tunstall 2010] Single random byte fault at 8t round of AES-128: Key 2128 - 212
[Ali 2012] Two seq. byte fault at 9t", 10t round of AES-192: Key 2128 - 1

Current DFA methods are optimal

IF

the fault model can be realized



Biased Fault Analysis

Random Byte
m Fault Model 7 Random Bit

Chosen Bit » C,C,C" . —>K

Fault
Injection

P

» Fault



Biased Fault Analysis

Random Byte DEA

Cryptographic Random Bit
Algorithm m) Fault Model Chocor o » C.C.C" .. —K

Fault

.- | Variable Fault Intensity
Injection

Implementation

FSA [2010]

NUEVA [2012]
Cryptographic Fault Bias NUFVA [2013]
Architecture » Fault { 1-bit, 2-bit, .. » DFIA [2014]

DERA [2015]




Biased Fault Analysis

Under Correct
Biased Key Hypothesis
Fault

Injection T
e
Y
S |\\. °

"7 faulty S’

&s >

SBOX

SBOX-(C’ ® )

¢

C C’

RK

Under Wrong
Key Hypothesis

A

SBOX-(C’ ®

1r

C!

A

)



Differential Fault Intensity Analysis

Biased
Fault
Injection
S 1. Inject Faults at different Fault Intensities
/l/ 5 HW(S® S')<¢
2. Collect Fault Ciphertext C’
SBOX 3. For all Key hypothesis RK; , compute
S rk = SBOX(C' @ RKpyp)
4. Select RK for which
RK
C Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa M. |. Taha, Patrick Schaumont:

Differential Fault Intensity Analysis. FDTC 2014: 49-58



Safe-error Analysis

Input: Elliptic Curve Point P
secret 1nteger k
Output: k.P

1.R[0] =0

2.for 1 =1 - 2 down to 0 do
3. R[0] = 2.R[0]

4, R[1] = R[O] + P

5. R[O] = R[k,]

6.end for



Safe-error Analysis

Input: Elliptic Curve Point P
secret i1nteger k
Output: k.P

1.R[0] =0

2.for i =1 - 2 down to 0 do _ .
3. R[0] = 2.R[0] ] Every loop |te.rat|on,
4. R[1] = R[0] + P | one of these is |
5. R[O] = R[ki] adummyoperatmn
6.end for

Return R[0]



Safe-error Analysis

Input: Elliptic Curve Point P
secret 1nteger k

Output: k.P

1.R[0] =0

2. r 1 =1 — 2 down to 0 do
3. R[O] = 2.R[0O]

4. R[1] = R[O0] + P
5. RIO] = RIlky] C-safe error:
o.end for .

Injecting a fault in a dummy
operation will not affect
the output

Return R[0]



Fault Enabled Logical Attacks

e General-purpose computing
 Memory dump extraction

Control-flow hijacking

Privilege escalation

Secure Boot bypass

Memory disturbance error attacks

DVFS interface attacks



Memory Dump Attack

for (1 =

outport

1d
label:

add
cmp
bne, a
1d
ret

i < len; 1i++)
buffer[i];



Memory Dump Attack

for (1 =
outport

1d
label:

st
add
cmp

bne, a
1d
ret

0;

1 < len; 1+t++)
buffer([i];

%gBI [ %g2 ]

sgl, 4, %gl

sgl, 0x40

label Instruction-skip

[ $10 + %gl ], %g3

Memory Map

Program
Image

Stack | buffer

1 )

Outport

Data

\ 4



Buffer Overflow Attack ARM Cortex MO

vold myfunc (char *buf) {
char msg[20] = {0};
strncpy (msg, buf, sizeof (msg)-1);

Shoei Nashimoto, Naofumi Homma, Yu-ichi Hayashi, Junko Takahashi, Hitoshi Fuji, Takafumi Aoki: Buffer overflow
attack with multiple fault injection and a proven countermeasure. J. Cryptographic Engineering 7(1): 35-46 (2017)



Buffer Overflow Attack

vold myfunc (char *buf) {
char msg[20] = {0};
strncpy (msg, buf, sizeof (msg)-1);

volid *memcpy (void *dest, malicious buf

const void *src,
size t len) {

char *d = dest;

const char *s = src;

while (len--) Instruction-skip

*d++ = *s++;
return dest;



Privilege Escalation

ARM Cortex A-9

r0O =0 .. rll = 0

r7 = 0xdO
svc #0 // setuid system call
if (r0O == 0) // success

system (“/bin/sh”);

Niek Timmers, Cristofaro Mune: Escalating Privileges in Linux Using Voltage Fault Injection. FDTC 2017: 1-8



Privilege Escalation

r0 =0 .. rll =0 >
r7 = 0xdO
sve #0 fA—zetwid system call
if (r0 == 0) // success
system (“/bin/sh”) ;
320w -
&Y v c &G GG G G v ¢ C
G G G
310%(;0@ e G G ¢ ¢ & ¢ fe & ¢ .G &
- Cg GG . G chGG ’N’G § ¢ G& d
23007 6% % o ¢ g €% G, 0% % o g
s 7 ¢ Gge cg °c e G ot ¢ ¢ %Geg Lo ¢
290 e, G & %O a & $ et " T g
g g G g, S g¢ %;f .66 % GG 4@
BZBOQGG fe. GGGgG ¢ § G@gg GGGQ@ é’? e § C
£ i fana %G ‘cfg ¥ o0 EGg c
z ¢Ge Expected |¢§ G ¢ G g Y%e, © G GEC . g
444 Success & & oo@ ¢ G LU %’GG
260 ¢ Cos G0 .6 @ @ %c¢ g
Mute G 69 Gg & G t‘g@ GGG%S ‘é ¢ &
154 o

n G rel
2000 3000
Glitch Delay (ns)

1000

ARM Cortex A-9

System Call

setuid

18968 experiments
21 hours

1.3% success rate
Root Shell spawned
every 5 minutes



Memory Disturbance Error Attack

leak charge @ repeated word access

row O -
row 1
&
row 2
[ row buffer

]

word

bit

* Sandbox escape and Memory Access Privilege Escalation [Seaborn 2015]
* Bit flip achieved in a cloud setting [Razavi 2016]

* Bit flip achieved through Javascript [Gruss 2016]

e Bit flip achieved through Android [Van der Veen 2016]

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, Onur
Mutlu: Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors.

ISCA 2014: 361-372



The present and the Future

Fault Injection Hardware

Fault Control | —>{ Injector

Timing v
~ Physical Stress

2

1/0 MEM CPU




The present and the Future

Fault Injection Hardware Software Tasks

Fault Control [—{ Injector CTL/Injection | | Victim
Timing v v
~ Physical Stress Physical Stress

v £

1/0 MEM CPU 1/O MEM CPU




The present and the Future

Hardware-controlled Software-controlled
Fault Injection » Fault Injection

1997 (Bellcore) - now 2014 (Rowhammer) - now

Fault Injection Hardware Software Tasks

Fault Control Injector CTL/Injection | | Victim
Timing v ‘J,
—~ Physical Stress Physical Stress
1/0 MEM CPU 1/0 MEM CPU

Fault
Injection

Fault
Manifestation

Fault
Propagation

Fault
Observation

Fault
Exploitation




Part 2: Modeling of Fault Attacks
---Attacks at Hardware Level
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Preliminaries
e Technological context

- Design Abstraction Levels

- Fault Injection Technologies
e Fault Attacks

- Fault Exploitation

- Attacker Models

Modeling of Fault Attacks

e Attacks at Hardware Level
- Gate-Level Faults
- RTL Fault Characterization

- Instruction-Level Faults
- SW Fault Characterization
- Examples

Fault Countermeasures
e Hardware Countermeasures
- Fault Sensors

- Check-pointing and Recovery
- Examples
[

Software Countermeasures

- Integrity Checking and Verification

- Compiler based Countermeasures

- Examples

J




Outline

* Introduction of fault model
* Physical mechanisms exploited by fault attacks

* Fault modeling
* Transistor level
* Gate level
» Register transfer level (RTL)

* Fault Characterization
* Overclocking attack
* Under-powering attack

 Tools for fault injection and analysis



Assumptions Constitute the Fault Model

* Location of the fault in the circuit
* Precise time of fault injection
* Specific value of a faulty variable




Impact of Fault Injection Location on Key
Retrieval

Number of faulty ciphertexts Fault injection locations
250  —mmmmmmmmmemmemees Computation of 9t round!!!
128 — 256 —======mm === Computation!?]
A0~ TTTTTmmmmmmmmmmees A byte between computation of 8" and

oth round MixColumnB!

9 =mmmmmmem——eeeeeee Input for 8" or 9*" round

[1] C. Giraud, LNCS’04. [3] P. Dusart, LNCS’03.
[2]J. Blbmer, LNCS’03. [4] G. Piret, CHES’03.



Four Aspects of a Fault Model

Fault Model
Fault Control
type location &
timing
e Single bit e Stuck-at e Precise e Transient
e Few bits e Bit flip e Loose e Permanent

e Word e Random e None e Destructive

6



Abstract Levels in Cryptographic Hardware
Design Process

A Protocols
‘ Crypto-

Arithmetic grz.apl.ﬂ.c
y primitives

RTL (ALU,
‘ Logic registers, &
r memory)
Transistor {gates &

flip-flops)



Laser-based Fault Attacks on VLSI

e Laser

* Light Amplification by Stimulated
Emission of Radiation

* Good spatial and temporal precision
precision to inject the faults
e Diameter of laser beam
* Wavelength
* Amount of emitted energy
* Impact coordinates (attacked circuit part)
* |mpact moment
* Exposure duration

M. Agoyan, PASTIS’10.

Drain

Laser /

k.,. »n*diffusionj
s

|3

+ |+ P Substract




Laser-based Fault Attacks on VLSI (cont.)

* Diameter of a laser beam with respect to layout area affects the fault
model
* Fault type
* Bit-set [1], bit-reset, bit flip [1]
* Involved area/spot diameter
e ~125um * 125um [1]
* 0~ 2500um [2]
* Size of affected vector:
* single bit [1], byte [1, 2]

AT,

Bit Flip
Zones

NIITaabbbasas

NN
AT I ]I LRIR NN
AT T NN
M \\k\%\\ iy
N \
MMM

Laser station [2]

[1] C. Roscian, HOST’13.
[2] J.-L. Danger and S. Guilley, Fault Attacks on Electronic Circuits, https://perso.telecom-paristech.fr/danger/SETI/DFA_SETI.pdf



Focused lon Beam based Fault Attacks on VLSI

* Focused lon Beam (FIB)
* Liquid metal ion sources (gallium)

* High beam currents can sputter
materials at a specific site
e Cut unwanted electrical connections

* Deposit conductive material to make a
connection

https://en.wikipedia.org/wiki/Focused_ion_beam

Charge Neutralization

%pﬁonal)
e

Ga+ 3

Gas Assisted Etching
or Selective Deposition

(09“0%
gas

gas

o
43

a3

gas

10



Particle Strike on Chip

«-PARTICLE :
= 3| Prompt o g
:_'_':; charg_e Diffusion
> | collection 1 charge :
g _ 1 collection i
= i
DEPLETION 8
REGION =
QC, Onset
E 4l of event
=
5 O '
~ DIFFUSION |
0 : : : H
P SUBSTRATE 10-‘3 10-'2 ‘10—“l 10-'° 10_9
Time (seconds)
http://www.iroctech.com/soft-error-library/faq/ R. Baumann, IEEE Design & Test of Computers’05.

11



Single Event Transient (SET) Fault

e Factors to consider in fault attacks at hardware level
* Particle energy
* Transistor size
* Faultinjection location and timing
* Masking effects

Particle \

N

p

j%

Flip-
Flop
N\

CLK

L

If the SET is latched, a
transient fault is formed

JV\

12



Modeling Single Event Pulse

E i

= 3| Prompt i :
;:; charge i Diffusion
> | collection i charge
ol 1 collection
=4 2 i
s : :
< Onset :
£ 1| ofevent .
3 ]

0

10" 10" 10" 10" 10°

Time (seconds)

(1]

1{e) =2 exp(--5) - exp(-)

Iy

_l‘r

f r

[1] R. Baumann, IEEE Design & Test of Computers’05.

[2] N. Kehl, T-RL'11.
[3] H. Pahlevanzadeh, JETTA’14.

[2]

Sobopsolsolbofols

| | SET Pulse

CIock—>

SET Current

7

Output voltage of 1st Inverter

?

Output voltage of 2nd Inverter

QOutput voltage of 3rd Inverter

— 2

12.0

14.0 16.0
Time (ns)

[3]

13



Masking Effect of SETs

« Logical Masl&-ﬂ} 1

0—

« Electrical Masking(,H—@
— ViH
M VOL_@_VIL

« Latch Window Masking

lock — d
Cloc "‘\TH T

Feature l
Size

FrequencyT

SERger

Electrical
Masking
Effect

Latch
Window

Masking
Effect

14



Single Event Upset (SEU) Fault

 SEU permanently changes
the logic value saved on

the storage element until it
is overwritten word

bit

D+|>o_

— Q

E—@

9]

Storage
D-latch nodes

<7

6-T SRAM Cell

15



Multiple-bit Upset Faults

Attack Origin Attack Recepient(s)

* Multiple-bit SEU causes e e
— Particle incidence angle » f
— Transistor dimensions
— Voltage supply
— Memory array density

 Single ion can hits two or more bits
causing multiple faults

S\ _~ N\

Combinational
logic

clk

A. Papadimitriou, HAL'16 16



Overclocking, Under-powering, and
Overheating based Fault Attacks on VLS|

* Under-power and overheating fault attacks on circuits lead to the
occurrence of timing violation

D Q

—> /

s

>
D

>

Tek >= Toaag*T

]

overclocking

Q

pmax+

]

T

setup

under-powering,

overheating

vdd

PMOS
In

Zs
iCas 72 (Vo ~ Vi)
p

17

[1] Razavi, Fundamentals of Microelectronics. Wiley, 2008. [2] D. Ha, TLVLSI'12.



Impact of Data Dependence on Fault Injection

vdd
 Particle polarit
P Y | P/\S
* Critical path of the design In | /Mi\) _ Out
e+
* Input data T NMOS[ ¢,
ond end
A @A Flip- |
_j/\ ¢
] Multi-bit fault
B _\/\ .
Dais

D
o CLK JL 18



Locality properties of a Fault Model

Attack Attack Attack Attack

origin recipients capture effect

19



Outline

* Fault modeling
* Transistor level
* Gate level
» Register transfer level (RTL)



Fault Modeling at Transistor Level

* SPICE-level fault modeling provide accurate results, but it is time-

consuming

[ JoX } X/ Virtuoso® Schematic Editor L Editing: QYWrk ABC schematic

Launch File Edit View Create Check Options Window [BM_PDK Help cadence

o = e« d 0 @ xX Q@ T

HNavigator 78/

Default B

Q 8-
Name

= ABC

) THD (nfet)
©) N1 (nfet)
©) TNZ (nfety
©) TPO (pfet)
©) TP1 (pfed)
(©) TPZ (pfet)
1a
1B
1 C
1 gnat
1. netz
1. nets
1 out 9]
1. sub!
1 wddt
® AP_0

Property Editor 78/

H. Pahlevanzadeh, JETTA 14

¢ -7 r I/ Q&8 ML 1o

e e BEGEIMAGan 8| B-

Soft Error Rate

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

505

MC Random

Proposed

1005 1505 2005 2505 3005 3505

Simulation Time (Cycles)

4005



Fault Modeling at Gate Level

* Modules described in hardware description language are first
synthesized by Synopsys Design Compiler

* Critical paths are reported by the synthesize tool

I

n - TopLevel.1 (simon) - [Schematic.3]@tesla.unh.edu

k Design Visiof
I@ﬁle Edit View Select Highlight List Hierarchy Design Attributes Schematic Timing Test Power AnalyzeRTL Window Help

J. Dofe, ESL'15



Fault Modeling at Gate Level (cont.

e Simulation stimulus generated by tools, such as TetraMax, are applied
to the design module for fault analysis

File Edit View Netlist Rules Scan Primitives Faults Patterns Buses Constraints Loops Run /
= =] & A A %
Cmd Save Transcript Transcript |ncrease Font Decrease Font | OPen GSV | Hierarchy Browse

\

i ‘.?,f TetraMAX - Set Faults@tesla.unh.edu X | Messages | Netlist | Build | DRC | Summary | ATPG | Write Pat. | Write Testbench | Simulation
4 119 1 45 0/29/20 93.84% 633.31 ( 10:33.31 )
. 120 1 44 0/29/20 93.93% 633.34 ( 10:33.34 )
MOdeI Credit 121 1 43 0/29/20 94.02% 633.36 ( 10:33.36 )
(. (-. 122 2 41 0/29/20 94.20% 633.38 ( 10:33.38 )
s, StUCk Path delay - 123 1 40 0/29/20 94.29% 633.38 ( 10:33.38 )
Pt credit: |50 Cancel 124 1 39 0/29/20 94.38% 633.40 ( 10:33.40 )
¢ 1DDQ ) X |
Au cred|t-l0 #patterns #faults #ATPG faults test process , Uncollapsed Transition Fault Summary Report
¢ Transition Bndge : Help stored detect/active red/au/abort coverage CPU time
125 1 38 0/29/20 94.46% 633.42 ( 33.42, fault class code #faults
— Equivalence code ——— - Report—— 126 1 37 0/29/20 94.55% 633.43 ( ) —
127 1 36 0/29/20 94.64% 633.44 ( ) Det ted DT 1070
o - . 128 1 35 0/29/20 94.73% 633.45 ( ) etecte
& Code name: | ¢ Collapsed R - R Dottt tactoa er °
130 1 32 0/29/20 95.00% 633.47 |, )
" None g Uncollapsed 131 1 31 0/29/20 95.09% 633.48 ,10 ) Undetectable uD o
132 1 30 0/29/20 95.18% sjs/s!r ) ATPG untestable AU 26
133 1 29 0/29/20 95.27% 633 ( )
—Summary report 134 1 28 0/29/20 95.36% cillss | ) Not detected ND 24
N N . 135 1 27 0/29/20 95.45% 3.58 ( ) ——
[~ ATPG effectiveness I~ Bridge input 136 1z o/29/20  95.548 Gs1.65 ( ) B total faults 1120
136 o 24 0/31/20 95.54% 651.66 ( ) 95.54%
[V {Fault coverage: I~ Verbose U test coverage :
i Uncollapsed Transition Fault Summary Report ' fault coverage 95.54%
fault class code  #faults L o o o e e e e e R S e M e R M S
- Pattern Summary Report
. Detected T 1070
Fault setup in TetraMAX ” .
Undetectable up 0 #internal patterns 136
ATEG untestable AU 26 #full seguential patterns 136
Not detected ND 24
total faults 1120 TEST-T>
test coverage 95.54%
fault coverage 95.54%
-
Pattern Summary Report ”
-
#internal patterns 136 ”
#full_sequential patterns 136 - 23

- Fault coverage report




Fault Modeling at Gate Level (cont.)

{ LW, RW}
for state i

CW

N\
{LW, RW}

for State i+1

{LW’, RW’}
for §tate i

v ‘
Permutation \

CW,,

v

De-Permutation

"—’;?4—"CW'

<—l—>/¢

Error
{LW’, RW’}
for State i+1

Fault Bypass Rate

= m mDMR
—8— PermDeperm
—+— DuoMask
—&— |nverse
—»— Proposed

2 4 6 8 10 12 14 16
Number of Injected Faults

Bit-flip fault

Fault-detection algorithm applied to SIMON

J. Dofe, ELS’15

Fault Bypass Rale

= = = DMR
i PermDeperm
—#— DuoMask
=il Inverse
—— Proposed

2 4 6 8 10 12 14 16
Number of Injected Faults

stuck-at-0 fault

Fault Bypass Rate

_s| —»— Proposed

= = mDMR

== ParmDeperm
—#— DuoMask
il |verse -]

Y7

2 4 8 8 10 12 14 16
Number of Injected Faults

stuck-at-1 fault

24



Fault Modeling at RTL

e Easy to control the attack origin: area, space or elements

Experimental setup using SAKURA-G FPGA

1
/

= e o o = o

AES Core aes_corg Fault input

-
= T.dinT(dat), " .dout(dat next), .kin(rkey next), .sel(sel), I.FA(rnd[S])I);
- - —-— e s o ol
KeyExpantion keyexpantion
(.kin(rkey), .kout(rkey next), .rcon(rcon));

-
'4” always @ (posedge CLK or posedge rst) begin

o e if (zst) rnd <= 10'b0000_0000_01;

Elsjflfnz(igi pearn rnd <= {rnd[8:0], rnd(S]}; Else lf (EN) beQin

Endelse if (~rnd[0]) rnd <= {rnd[8:0], rnd([S]}; lf (Drdy) Ind <= {Ind[e : 0] . rnd[g] };
end else if (~rnd[0]) rnd <= {rnd[8:0], rnd[9]}:
Alu:‘gs‘Es(lzt’:sidqes:?[(ﬁ;:gl;:csed%e rst) begin \\\ end
endelse if (EN) sel <= rnd[S]; \ end

always @(posedge CLK or posedge rst) begin
if (zst) dat <= 128'h0;
else if (EN) begin

o e cene e Consequence : evade the encryption process

end
end
assign Dout = dat;

always @(posedge CLK or posedge rst) begin

if (zst) key <= 128'h0;
else if (2N)
if (Krdy) key <= Kin;
end

always @(posedge CLK or posedge rst) begin
if (rst) rkey <= 128'h0;
else if (ZN) begin
if (Krdy) rkey <= Kin;
else if (rnd[0]) rkey <= key;
else rkey <= rkey_next;
end

| Fault in round function of AES
Round function of AES

25



Fault Modeling at RTL

RES Core aes_core

KeyExpantion keyexpantion
(.kin(rkey), .kout(rkey next), .rcon(rcon)):

I assign dat_next_fault = dat_next ~ FA; |

always @(posedge CLK or posedge rst) begin

if (rst) rnd <= 10'b0000_0000 01;
else if (EN) begin
if (Drdy) rnd <= {rnd[8:0], rnd[9]}:
else if (~rnd[0]) rnd <= {rnd[8:0], rnd[9]};
end
end

always @(posedge CLK or posedge rst) begin
if (rst) sel <= 0;
else if (EN) sel <= rnd[9];

end

always @ (posedge CLK or posedge rst) begin
if (rst) dat <= 128'h0;
else if (EN) begin
if (Drdy) dat <= Din * key;

end
assign Dout = dat;

Fault in intermediate register of AES

Fgulllrwti:c

(.din(dat), .dout (dat_next), .kin(rkey_next), .sel(sel),l.FA(FA);

else if (~rnd[0]|sel) dat <= dat_next; ﬂ
end

always @(posedge CLK or posedge rst) begin

if (rst) rnd <= 10'b0000_0000_01;
else if (EN) begin
if (Drdy) rnd <= {rnd[8:0], rnd[9]};
else if (~rnd[0]) rnd <= {rnd[8:0], rnd([9]}:
end
end

always @(posedge CLK or posedge rst) begin
if (rst) sel <= 0;
else if (EN) sel <= rnd[9]:

end

always @(posedge CLK or posedge rst) begin

if (rst) dat <= 128'h0;
else if (EN) begin
if (Drdy) dat <= Din f keyi
else if (~rnd[0]|sel)lfat (= dat_next_fault;|
end -—en omm T mE mm ==

end
assign Dout = dat;

Consequence : Faulty ciphertext

26



Fault Characterization for Overclocking on FPGA

1) Send a pair of {plaintext, key} to the test
module

2) Launch an encryption at nominal settings [~ ] — ,
* Obtain a correct ciphertext 16

3) Increase successively by an elementary
step the stress applied to the target
e Obtain a faulty ciphertext

4) Process the ciphertext via reversing
encryption and compare the
intermediate states NN,

—
(8]
I I I I T T

R = O ®
!

Fault distribution (%)
=)

| | | | | |

[§9]

5) Retrieve the injected fault 0 1 504 5 6 7 8 9 10

Round number

* Collect {plaintext, key, ciphertext, fault}. Distribution of the faults induced by overclocking
attack applied to AES-128 FPGA implementation

L. Zussa, DCIS‘12.



Fault Characterization for Under-powering on ASIC

» Standard communication except

the power generator - e (| Yéé%‘:{ o
* Record {message, key, ciphertext} - o —— =
for encryptions at different values L] o a
of VCC
¢ Key remains at a constant Value bUt for (int round = 1; round < 10; ++round)
input message varies randomly {
// Fault injection
° Create RTL fault model Of AES and aes.set_state (aes.get_state () - f[round - 1] ),’
~ aes.SubBytes () ;
inject faults aes.ShiftRows () ; Bit-fli
. . aes.MixColumns () ; P
e Compare simulation output and aes.AddRoundKey () ; fault model
. . aes.KeySchedule (round) ;
experimental faulty ciphertext )

S. Guilley, Springer’12. 28



Fault Analysis on Injected Faults

* Flow of fault analysis

The evaluator collects

a {m,k,c} triples

The encryption is correct I

The fault is uncovered I

The fault is unezploitable I

Yes
I The fault is ezploitable I

S. Guilley, Springer’12.

Coverage [%]

T
Faults

Single errors

+

100

T T
Detected errors ~ +

Exploitable errors in R7
Exploitable errors in R8  *

770

780

790 800
Voltage [mV]

29



Spatial and Temporal Characterization of Faults

Not all S-boxes are placed and
routed exactly same

 Spatial characterization

* In which d '
N which roun Faults are localized due to the

* Temporal characterization critical path is data-dependent
* In which byte of the state

N
(&)

O rr—T—T 7T T T T T T T T T T T T T T T T T T T T T
Spatial localization ———— Temporal localization =
25
20
20 -
2 %)
= % 15
] (]
= 15F ha
3 S]
ES ® 10 F
10| B
5 . 5r
0 S s e e NN S Y N N S Y | 1 1 1 1 L
8588388588282z T 8 m ¥ 8 e » = @
hn DD DD € & & &£ o© & €& &£ & &
Sbox Round

S. Guilley, Springer’12. 30



Tool for Hardware Fault Injection - FIST

e FIST (Fault Injection System for Study
of Transient Fault Effect) can inject
faults inside a chip

* This tool uses heavy-ion radiation to
generate transient faults at random
locations

* The radiation can cause single or
multiple-bit errors inside the chip

Mei-Chen Hsueh, Computers’97.

Inside vacuum chamber

Reset
Reference CPU Test CPU
Data q
External External
bus bus
Comparator
error flip-flops
. Serial M o
Trigger | External port ! emory
bus H
Error Logic Commands and
data analyzer PRCGERTI RGN
Error
data
Host Error data Monitoring
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Platform for Gate level Fault Injection - CrashTest

* This platform

o Is an FPGA-based hardware emulation to performs gate-level fault injection on a full-system
design

o Converts the user-provided high-level HDL module to technology independent gate level
netlist

o Allows user to specify the fault injection locations as well as random selection of fault sites
o Provides easy way to add new fault models

I |
1 Framework Fault Injecton n Fault Smulation Framework
! Front-End t e LT Back-End !
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Fault attack on software

= Cryptographic key retrieving

= By forcing one additional AES round [pehbaoui et al., cosaDE 2013]

= Different fault exploitations on ARX-like stream ciphers (kumar et al., FoTC 2017]
= Bypassing authentication step in a secure boot process [timmers et al,, FoTc 2016]
= Taking over a device by faulting system codes (rimmers et al., FoTc 2017]

= Privilege escalation in a TEE-like environment [vasselie et al. FoTc 2017]

= Macro view of fault attacks
= A successful fault injection leads to an exploitation

= Useful from an attacker point of view

Q SORBONNE
p A white-box introduction to fault attack — HOST 2018 — 04/30/2018 b U!\lIVERSITE 3



SW fault characterization

*= Necessary to design software countermeasures Fault modeling

Fault model

source —_—

= Simplified or abstracted representation of a physical fault effects code i
affecting an embedded software compilation “i{_;i}é
optimisation s
. . .4
= At agiven code level: binary, assembly code, IR, source code N
mbl =
e Bl
= No unified methodology to model all possible fault injection |
impacts on an embedded system (HW + SW) binary [Hioeis

code 000

Physical effects b
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Fault attacks at software level

Fault Exploitation
1 in.tver.ify(S,P){ S Fault\
Application 2 :?ESr':P) P Cont::)IFlow T
(0N 3 el;(:l} and/or
Firmware 4 r=0; (3) (a)DataFlow
S reumr Ny Fault Observation Fault effect depends on
T faulty instruction = Fault injection means
Software
= |nstruction Set Architecture =— .
Hardware = Running code
T faulty micro-op
Decode Execute = HWta rget
Micro-Architecture - s T I le = Faultl ti /t ted t of the HW
Level § Instruction g Fault Propagation au ocation argeted part o €
- o

Register File
Data Mem

A faulty bits

Logic Gates Memory Cells Flip Flops

{j @ % Fault Manifestation

Memory
Boot ROM |
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Fault attacks at software level

Fault Exploitation . .
e S X P Common instruction-level fault models
. . intr; aulty
Appl(l;::tlon 2 :?'ESr= P) " Control Flow T
P and/or = |nstruction ski
Firmware 4 EI:e= 0; © @ P
5 returnr r r o
(/" ——— Fault Observation » |nstruction replacement
T faulty instruction . .
Software = Register or memory corruption
d— Instruction Set Architecture =—
H . .
araware A faulty micro-op = Test inversion
Decode Execute . .
= Jump insertion
Micro-Architectur - s T I e
Level = Instruction g Fault Propagation
[a)

Memory Register File

Boot ROM |

Data Mem

Application of Attack Potential to Smartcards
A faulty bits @ - Common Criteria, version 2.9. May 2013

Logic Gates Memory Cells Flip Flops

{j @ %: Fault Manifestation
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Characterization of faults on the control flow and
data flow of software

= No methodology or easy way to characterize achievable faults (grey-box model)
= Huge parameter space : running code, fault injection mean parameters, HW target

= Common steps for SW fault modeling / characterization:
1. Scan the component to find out areas where faulty outputs are observed

2. Select one area with a high probability to observe a faulty output

3. Fault model elaboration on this selected area

Q SORBONNE
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Characterization of faults on the control flow and
data flow of software

1. Inject faults while running specific and carefully selected test codes
2. Analyze the output results and infer possible explanations / fault models
3. Validate the fault models
= By simulation: comparison of observed results with the simulation outputs

= By refinement: use specifically designed test codes and go back to step 1
@ Moro et al., Electromagnetic Fault Injection: Towards a Fault Model on a 32-bit Microcontroller. FDTC 2013.

@ Dureuil et al., From code review to fault injection attacks: Filling the gap using fault model inference. CARDIS 2015.

% Kelly et al., Characterising a CPU fault attack model via run-time data analysis. HOST 2017

Q SORBONNE
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Scan of the HW component

1. Inject faults while running a specific test code w/wo variation of other parameter injection

4 sensitive areas

Fault injections on
NOP instructions

Status register fault

= Laserinjection Total crash

= Atmel ATtiny 841 based on AVR core Memory content corruption

Simultaneous faults on several registers

@ Kelly et al., Characterising a CPU fault attack model via run-time data analysis, HOST 2017.

Q SORBONNE
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Area selection

2. Selection of the D region = Laser injection

=  Atmel ATtiny 841 based on AVR core

Status register fault
Flags corruption may result in the corruption of a branch instruction

Useful for bypassing security check or secure boot authentication

Q Kelly et al., Characterising a CPU fault attack model via run-time data analysis, HOST 2017.

i Q SORBONNE
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Refinement

3. New fault injections on a specific test code = Laser injection

= Atmel ATtiny 841 based on AVR core

New test code to test the primarily observed flags vulnerability

= Comparison and branch instructions to different blocks
composed of specific MOV instructions

= Easy determination of which instructions have been executed

= Subsequent invalidation of the vulnerability of the flags

= Final fault model: instruction skip with a high repeatability

@ Kelly et al., Characterising a CPU fault attack model via run-time data analysis, HOST 2017.

uuuuuuuuuuuuuuu
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Scan of the HW component

1. Inject faults while running a specific test code w/wo variation of other parameter injection
@ Moro et al., Electromagnetic Fault Injection: Towards a Fault Model on a 32-bit Microcontroller. FDTC 2013.

=Target instruction: single LOAD instruction that loads 0x12345678 into R8

sSpatial and temporal cartography

= Green : hardware interrupts

= Red :faults on the output value

= No fault on other registers than R8
(except for very few faults on RO)

Q SORBONNE
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Scan of the HW component

2. Selection of a « working » EM antenna position
=Target instruction: single LOAD instruction that loads 0x12345678 into RO

=Temporal cartography
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Fault model validation

3. New EM injections on

=  Only NOP instructions

= Anisolated load instruction surrounded by NOPs
4. Comparison with fault injection simulation

= |nstruction replacement fault model

=  When no instruction replacement can explain an output = data flow corruption

———————————————————————————————————————————————————————————————————————————————————

Idr r4, [FLASH_ADDRESS] — r4 @ attacked_value
inst - NOP (25% of observed faults on a larger code)

inst - replaced_inst

b o o o e e e e e e = = = e e = e e e e e e e e e e e e e e e - -
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Fault models at software level

Fault modeling
= At source code level

source
code

compilation
optimisation

[Kelly et al., 2017]
[Yuce et al., 2017]

[Timmers et al., 2016] aszzr:;:ly = At assemb|y level
[Dureuil et al., 2015] . .
[Riviere et al., 2015] - InStrUCtlon(s) Sklp
[Moro et al, 2013] binary . Instruct!on(s) replacement
[Balash et al., 2011] code = Corruption of loaded data
[Verbauwhede et al., 2011] . ] Register(s) Corruption(s)
[El Bar et al., 2006]

Physical effects

(] Q SORBONNE
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Fault impact at source level

Instruction skip at assembly level
= The skipped instruction writes into a general register
(add, load, ...)
=  Next use of faulty register will propagate the fault

=  Data corruption

a=>b + c;

add r3, r2, rl add— 3, r2, rl
‘ strb r3, [r0]

strb r3, [r0]

a = attack();

p @ A white-box introduction to fault attack — HOST 2018 — 04/30/2018
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Fault impact at source level

Instruction skip at assembly level
= The skipped instruction writes into a general register
(add, load, ...)
=  Next use of faulty register will propagate the fault

=  Data corruption

a=>b + c;

4

add r3, r2, rl add r3, r2, rl
strb r3, [r0] ‘ strb r3, [r0]

a = attack();

=  Equivalent to the corruption of destination register

Q SORBONNE
p A white-box introduction to fault attack — HOST 2018 — 04/30/2018 b UNIVERSITE
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Fault impact at source level

Instruction skip at assembly level
= The skipped instruction writes into a general register (add, load, ...)
=  Next use of faulty register will propagate the fault

=  Potention branch corruption / test inversion

cond = *ch; 1dr r3, [x0] 1derx3, [0}
if (cond) bnz r3, then bnz r3, then

{ else: - else:
// do somethingl .
) —

else j next j next

{ then: .. then:
// do something2 v
} next: next:

p @ A white-box introduction to fault attack — HOST 2018 — 04/30/2018

cond = *ch .

gotd fabel;then;
if{(!cond)
laKkel then:
// de semethingi
}
else

{
1 do something?

}

cond = *ch;
goto label_else;

{

// do somethingl

}

else

{

label_ else:
// do something2

}
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Fault impact at source level

Instruction skip at assembly level

= The skipped instruction writes into a general register (add, load, ...)

=  Next use of faulty register will propagate the fault

=  Potential branch corruption / test inversion

cond = *ch;
if (cond)
{

// do somethingl

}

else

{

// do something2

}

else:

then:

next:

1dr r3,
bnz r3,

j next

[r0]
then

—

4

else:

then:

next:

ldr r3, [r0]

bnz 3,

j next

then

cond = *ch;

goto label_then;
{

label then:
// do somethingl

}

else

{

// do something2

}

= Equivalent to a transient memory corruption (load instruction)

P &

A white-box introduction to fault attack — HOST 2018 — 04/30/2018

cond = *ch;
goto label_else;

{

// do somethingl

}

else

{

label_ else:
// do something2

}

"N SORBONNE
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Fault impact at source level

Instruction skip at assembly level
= The skipped instruction writes into the status register (flags)

= Next branch corruption

push {r4, r5, 1lr}
movs r3, #0
.L2:
i cmp r3, r2
BOOL byteArrayComp (UBYTE* al, UBYTE* a2, UBYTE size) bge L7
{ ' . 1drb r5, [r0, r3]
int i; ' _ . 1ldrb rd4, [rl, r3]
for(i = 0; i < size; i++) { cmp r5, r4
if(al[fi] != a2[i]) { bne Lé
return BOOL_FALSE; adds £3 r3, #1
} b L2
} L7:
return BOOL_TRUE; movs r0, #170
} . pop {r4, r5, pc}
[ Dureuil et al, FISSC Benchmarks, SAFECOMP 20161 L5
movs r0, #85
= Equivalent to a test inversion or a jump insertion Pop {rd, r3, pc}

Q SORBONNE
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Fault impact at source level

Instruction skip at assembly level
= The skipped instruction writes into the status register (flags)

= Next branch corruption

push {r4, r5, 1lr}
movs r3, #0
.L2:
i cmp r3, r2
BOOL byteArrayComp (UBYTE* al, UBYTE* a2, UBYTE size) bge L7
{ ' . 1drb r5, [r0, r3]
int i; ' _ . 1ldrb rd4, [rl, r3]
for(i = 0; i < size; i++) { cmp r5, r4
if(al[i] != a2[i]) { bne L;
return BOOL_FALSE; adds £3 r3, #1
} b L2
} L7:
return BOOL_TRUE; movs r0, #170
} . pop {r4, r5, pc}
[ Dureuil et al, FISSC Benchmarks, SAFECOMP 20161 L5
movs r0, #85
= Equivalent to a test inversion or a jump insertion Pop {rd, r3, pc}

Q SORBONNE
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Fault impact at source level

Instruction skip at assembly level

=  The skipped instruction writes into memory

=  Data corruption

Output corruption and/or propagation of the fault to the subsequent reads

= Equivalent to a memory corruption

a=>b + c;

add r3, r2, rl add r3, r2, rl
strb r3, [x0] ‘ strb 3, [0}
a—= bttack();

Q SORBONNE
p A white-box introduction to fault attack — HOST 2018 — 04/30/2018 b UNIVERSITE
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Instruction skip at assembly level

= The skipped instruction is a branch

=  The fall-through block will be executed

= Potential control-flow corruption

cond = *ch;
if (cond)
{
// do somethingl

}

else

{
// do something2

}

1dr r3, [x0]
bnz r3, then
else:
j next
then:
next:

= Equivalent to a jump insertion

P &

—

Fault impact at source level

else:

then:

next:

1dr r3, [r0]
bnz 3, then

j next

cond = *ch;
goto label_else;

{
// do somethingl

}

else

{

label_else:
// do something2

}

A white-box introduction to fault attack — HOST 2018 — 04/30/2018
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Fault impact at source level

Instruction skip at assembly level
= The skipped instruction is a jump
=  The fall-through block will be executed

=  Potential control-flow corruption

cond = *ch; 1dr r3, [x0] ldr r3, [r0]
if (cond) bnz r3, then bnz r3, then
{ else: - else:
// do somethingl -
} ‘

else j next Jj—next

{ then: .. then:
// do something2
} next: next:

cond = *ch;

if (cond)
{

label_then:
// do somethingl
}

else

{

// do something2
goto label then;

}

= Equivalent to a jump insertion

p @ A white-box introduction to fault attack — HOST 2018 — 04/30/2018
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Next use(s) of faulty register will propagate the fault

One or several consequences

Fault impact at source level

Fault impacting a general register

Data corruption(s): var

attack();

Control-flow corruption: goto label;

Fault propagation related to

Subsequent uses of the faulty register: « criticality »

Initial code and code compilation/optimization

P &

A white-box introduction to fault attack — HOST 2018 — 04/30/2018

4

1d r3, [r0]
st r3, [rl]

bnz r3, then
else:

j next
then:

next:
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Fault impact at source level

Instruction replacement

: . mem_cpy:
=  Oneinstruction is skipped push {r4, r5, 1r}
movs r3, #0
) ) ] -L2:
=  One unexpected instruction is executed clps—=2, 35122
bge .L7
ldrb r5, [r0, r3]
=  Combination of instruction skip effects with the one of the extra instruction strb  r5, [rl, r3]
bne .L5
adds r3, r3, #1
"  From an attacker point of view 7 b -L2
= Only exploitation matters movs ro, #0
pop {r4, r5, pc}

= Need to keep the effect controllable:
= |nstruction skip is the most convenient

= Achievable with different injection means

"N\ SORBONNE
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Fault model at source level

= No correspondence between fault models at instruction-level and source level
= Astatement is translated into several assembly instructions
=  Several faults at assembly level can result into the same fault at source-code level

= Afault according to a fault model at source code level may not exist once the code is compiled

=  Some faults at assembly level cannot be directly expressed at source-code level

= Code placement, code optimization

= Source-code fault models are necessary
= Source code protection

= Vulnerability analysis

Q SORBONNE
p A white-box introduction to fault attack — HOST 2018 — 04/30/2018 b U!\lIVERSITE
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[Berthomé et al, 2010]
[Berthomé et al, 2012]

[Kelly et al., 2017]
[Yuce et al., 2017]
[Timmers et al., 2016]
[Dureuil et al., 2015]
[Riviere et al., 2015]
[Moro et al, 2013]
[Balash et al., 2011]

[Verbauwhede et al., 2011]

[El Bar et al., 2006]

Fault models at software level

Fault modeling

source
code

compilation
optimisation

assembly
code

binary
code

Physical effects

ip @

= At source code level

= Control-flow disruption
= Variable corruption
= Combination

= At assembly level
= |nstruction(s) skip
» |nstruction(s) replacement
= Corruption of loaded data
= Register(s) corruption(s)

"N\ SORBONNE
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Taxonomy of Countermeasures

Gault Countermeasures)

(Fault Prevention Fault Correction)

(Fault Detection> Fault Response>

Physical Shielding * Sensors * Infection
Filtering * In-situ vs Environment * Checkpoint-Restore
Logical Shielding * Global vs Local e Redundancy
* Time lJitter e Concurred Error Detection
* Randomization * Time
e Spatial

* Information
e Algorithm-specific
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Shielding and Filtering

808nm

Grounded Metal Packaging
UV Resistant Die
Metal Layer

8 —> Metal Wiring  (EMFI)

ESEE —>  Transistors (Laser)

substrate

1064nm

Jasper G. J. van Woudenberg, Marc F. Witteman, Federico Menarini:
Practical Optical Fault Injection on Secure Microcontrollers. FDTC 2011: 91-99



Logical Shielding

* Insertion of random delays, clock jitter
* Internal/modulated clocks
 Randomization of schedule

‘Launch’ DFF Daap ‘Capture’ DFF
o JHELSY = D a
0o,
P 2
CK Set Reset Set Reset
Dskew
titowy b tshod
CK

XXXy D [RXXEXXXEXXXXY D RXXXXXXXXXXXX]

)

Sébastien Ordas, Ludovic Guillaume-Sage, Philippe Maurine: EM Injection: Fault Model and Locality.
FDTC 2015: 3-13
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Sensors

* Parameter
* Timing
* Voltage
* Photon

* Temperature
* EMFI

—r

clk

—>p

N

nominal clock period

critical path

+ slack

Overclocking
Clock Glitching

\ 2

critical path

Underfeeding <

- slack

nominal clock period

Voltage Glitching

Vv

increased critical path

Overheating



Sensors

* Parameter
* Timing
* Voltage
* Photon
* Temperature
* EMFI

* Locality
* In-situ — 100% detection rate
* Local Environment — false-positive/false-negative
* Global Environment — false-positive/false-negative



Sensors

clk
* Parameter logic logic
stage stage
* Timing
* Voltage trigger
dElay moparator
* Photon olk comparato
* Temperature
p Toshinori Sato, Yuji Kunitake:
¢ E M Fl A Simple Flip-Flop Circuit for Typical-Case Designs for DFM.

ISQED 2007: 539-544

* Locality
* In-situ — 100% detection rate

* Local Environment — false-positive/false-negative
* Global Environment — false-positive/false-negative



EMFI Sensor

e Local, based on PLL lock-detection

— Locked

PLL

EMI

D{’W” Relk
Celk
—

/

:Watch-Dog

Clock Paths

Noriyuki Miura, Zakaria Najm, Wei He, Shivam Bhasin, Xuan Thuy Ngo, Makoto Nagata, Jean-Luc Danger:

Probability

—
T

0.8 ——— EM Pulse Detected
Fault Injected
06F Undetected Faults
04r
. Security Margin
0.2H! >
“1
0 L 1 1 1 1 - 1
36 40.75 455 50.25 55 59.65

EM Pulse Injection Power (dBm)

PLL to the rescue: a novel EM fault countermeasure. DAC 2016: 90:1-90:6

64.5



EMFI Sensor

* |In-situ, based on Redundant State

Shadow-FF (SFF)

Dc 5 Q Qs * |n-situ, 100% detection rate

Main-FF (MFF) )] o> Aarm

D > D Q > Q

CLK >

C. Deshpande, B. Yuce, P. Schaumont and L. Nazhandali, "Employing Dual-complementary Flip-Flops to
Detect EMFI Attacks," 2017 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Beijing,
CN, October 2017.



EMFI Sensor

* Local, based on Delay

CK

delay

DCK

1(][)_ ........... e g Fr e e o : : : : ; 14400:_.
: : : : : : : : : ﬂm}
8[)_ ........... \a ............ - ............ |‘ ............ a . . . - 12000:
: ; : ; ---Alarm triggered ‘°ﬂ°°f
: : : % : —Fault in critical path 9500
e s S :
T 1 N T B raoo}
A0k ?"""“"ﬂ""“"“"? __________ Lo ?"_“_ng ____________ % ____________ é_unnnenu_unué 000}

4800+

Occurence (%)

- i ; E b ? ; 5. : ; E 3600}
20 N AR . T T R [ . Co : t

2400}

: : : : 1200}
1 L 1 L 1 L ] r

10 965 93 895 86 815 79 1755 72 685 of

Probe size

alarm

C]OC]( G]itc h (HS) (IJ I 1206 ﬁqbd ISGOU ;BIUOI 500{; I?EOG aqbd 9606 1.03051.2000{3520614;00
Xilinx Spartan Cartography, 5 sensors

Loic Zussa, Amine Dehbaoui, Karim Tobich, Jean-Max Dutertre, Philippe Maurine, Ludovic Guillaume-Sage,
Jessy Clédiere, Assia Tria: Efficiency of a glitch detector against electromagnetic fault injection. DATE 2014: 1-6



EMFI Sensor

* Local, based on Complementary Clock Signals

o< Dc
D - Qs QD—>D . Alarm Q2 _— D
HD1.Init:1 Init:1 HD1.Init:0
HD2.Init:0 HD2.Init:1
R F R
Clock o Half Detector
Clock | 1 L LJ L Clock [ L1 | w L1 L
Q; [ ——7 [ 17 1T L Q \ l ] R
QL ! T L 1 1 | Q2 4!—\_1__\_
Alarm . Alarm ||
rt -;t

David El-Baze, Jean-Baptiste Rigaud, Philippe Maurine: A fully-digital EM pulse detector. DATE 2016: 439-444



Concurrent Error Detection

input ——> Operation > output

—> Prediction Check }— alarm




CED on Encryption

* Information redundancy

In * Predict smaller than

@ Encoder, therefore error

coverage is imperfect

* Linear Parity Prediction
is easy: parity(a xor p) =
parity(a) xor parity(p)

* Non-linear Prediction
harder: parity(sbox(a))

Out Error

Akashi Satoh, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki:
High-Performance Concurrent Error Detection Scheme for AES Hardware. CHES 2008: 100-112



CED on Encryption

e Spatial redundancy

* Full coverage, but expensive in area

In
RegX
| 2
Enc [ Enc ]
v : v
Out Error Out Error

Akashi Satoh, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki:
High-Performance Concurrent Error Detection Scheme for AES Hardware. CHES 2008: 100-112



CED on Encryption

* Time redundancy

* Full coverage, but expensive in performance

In In
v L 4 ; P
RegX | § RegY LRegX LRng
. - | 2
| Enc | (Enc/Dec]
\
Out Error Out Error

Akashi Satoh, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki:
High-Performance Concurrent Error Detection Scheme for AES Hardware. CHES 2008: 100-112



CED Risks

* Time/Spatial redundancy susceptible to redundant
fault injection

 Fault Collision probability in redundant copies
increase for small, biased faults (1-bit, 2-bit, ..)

» Addressed by Fault space transformation

Input from Redundant

.
>

Previous Round Computation
Original

Conmputat

Register Update Register Update
S. Patranabis et al: A Generic Approach to Counter
Differential Fault Analysis and Differential Fault Intensity
Analysis on AES-Like Block Ciphers. IEEE Trans. Information
Forensics and Security 12(5): 1092-1102 (2017)

Error / No Error



Algorithm-specific Countermeasures

* Elliptic Curve Cryptosystems
E:y2+a,xy+azy=x3+a,x*+a,x+ag
P: (X, y)
Q=k.P
e Point validity check
e Curve integrity check
e Coherence check (eg. Montgomery Powering Ladder)

Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel, Ingrid Verbauwhede:
State-of-the-art of Secure ECC Implementations: A Survey on Known Side-channel Attacks and
Countermeasures. HOST 2010: 76-87
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Fault Response

e Often ignored, but a crucial aspect of
countermeasure design

* The response itself may be exploited in an attack
* Eg. In FSA, fault response leads to a hypothesis test

__N_AES
plaintext >

N

@ ©
o o ] o (=]
o0 O @O0

@ CHIOMRD O OO0

N
~l U

Critical timing delay [ns]

W [@DO GEPOMUD 0000 O

[o)]

Om

= [@ O

N [@Imo0 @ ©

clk ‘ ‘
' 4 5 6 7 8
Hamming weight of the input of S-box

Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko Takahashi, Kazuo Ohta:
Fault Sensitivity Analysis. CHES 2010: 320-334




Fault Sensitivity Countermeasure

Plaintexts
One-time -
memory Random Cryptographic
T number circuit
Initializing generator e
v CDB

y

Delay elements signal

PPP- - PP | Enable

CLK Register | Cryptographic
Configurable generator :l core
delay blocks
Ciphertexts
. T . T T : Clock period
CLK — T" : Reduced clock period
p— t .I_I—_I— I- t.,, : Critical path delay time
EN | _i——11 i [L t, :Delay time of delay elements
Logic o () Invalid output
out LA X X A XA () Valid output

Sho Endo, Yang Li, Naofumi Homma, Kazuo Sakiyama, Kazuo Ohta, Daisuke Fujimoto, Makoto Nagata,
Toshihiro Katashita, Jean-Luc Danger, Takafumi Aoki: A Silicon-Level Countermeasure Against Fault Sensitivity
Analysis and Its Evaluation. IEEE Trans. VLSI Syst. 23(8): 1429-1438 (2015)



~ault Response:
Redundancy vs Checkpoint-Restore

Concurrent Error Detection Checkpoint-Restore

‘ 3:: Sensor

—~ AN AANRA > Restore
I
A\ NI ﬂ/\/\/V\\L/vv\/\/\/\/\/—>
Storel

—~\\NrhA

L checkpoint

Majority-Vote

and Correction



Redundancy vs Checkpoint-Restore

Example: Protecting Embedded Software against Fault Attacks

Concurrent Error Detection

Redundant Execution

]
*s Fault Effect

28

, J Micro
Memory Processor
F | X
Fault

Checkpoint-Restore

@ Fault
Detection

Software

[ Crypto @

Secure
Trap

Handler

Memory

s
—

Micro
Processor

X

FAME

D{ Detector
J Checkpoint

Fault-attack Aware
Microprocessor Extension



FAME Operation [Hasp 16]

Protected Software

Application
Software

3. transfer the control

|

to the trap ha&l

Secure Trap
Handler (STH)

N

1. fault injection

4. access and restore
fault-free checkpoint

Fault Detection

Vdd O
clk ©

Unit (FDU)

—

2. alarm

Fault Control
Unit (FCU)

3. fault
recovery

info

7| Registers (FRR)

Fault Response

Baseline Processor

FAME Processor

Fault-attack Aware Microprocessor Extensions



Single-cycle Checkpointing Hardware

* Fault Response Registers (FRR) for critical processor
state, including PC, PSR and last two pipeline stages

Pipeline Stage Pipeline Register Pipeline Stage
i i+1
bufsel =0-——————— TERR ]

| |_F_ B_r"\
—§§O—r Shadow Register O :
|
!
|

|/

To Software
Trap Handler

0—'r Shadow Register 1

_____________




FAME Chip 1 Block Diagram

fault injection
controller

Fault
injector
(FPGA)

A

debugger
FAME ASIC
APB
I$ (1KB) FAME Core
D3 (2KB) AHB Debug
Debug Support Unit UART2 GPIO
Observe LEON3 Debug User
Core UART1 UART
Trigger (w FRR)
SRAM Interrupt
Reset Sensor Recovery 64KB Controller
Management (FDU) (FCU)
ROM
1KB

user I/O




FAME Chip 1 Micrograph

Instruction Debug Debug
Datacache cache yYART1  UART2 RAM
[

Reg.ister GPIO User  |nstruction Trace
File . Controller UART Buffers

32

180nm 6LM TSMC
25 mm? die area

Active area
LEONS: 6.217mm?2
w FAME: 6.301 mm?2

w FAME+Diag: 6.364 mm?
FAME extensions overhead
1.35% (of active area)
80 MHz clock
54 1/0
» Clock, reset
« 81/0, 16 Core Power
« 3x UART
« 4 GPIO
* 4 Trigger
» Sensor alarm monitor
« Scan and test pins
108-pin PGA package



FAME Chip 1 Test PCB
—

Debug/User USB-UART

Power
Measurement

Power/ Clock A Interface:

Glitcher

|tch generator

33

- igger, Scan, Alarm



FAME Chip 1 Test Setup

& °¢FAME

]
''''''''

34



FAME Chip 1 Fault Sensor

configurable delay stage (20x)

T-flop d E >o-[>o—[>o—[>o— a
A : D-flop
clk : A
L R ne DL OO L L L P LR PR PR ROR OO REE R SR clk D— alarm
d
D-flop d
A
Fault Detection Sensitivity
30 -~
25 1
Sensor Delay
Configuration
: =5 C5
% 15 1 -C4 Increasing C4
a C3 sensitivity
; —c C3
—C1 Cc2
Ceritical €1
5 ' g T T y ' g ' Processor Critical Path

12V 1.3V 1.4V 1.5V 1.6V 1.7V 1.8V 1.9v using Static Timing Analysis

Voltage (V)

35



Secure Trap Handler Development
|

int ptc = 3; //Pin Try Counter
char devicePIN[5] = “12824";

int VerifvyvPin (userPIN)

{

ptc—-;
\ if (ptc > 0)
if (Cmp (userPIN,devicePIN))

result = 1;
else
result = 0;
ptc—-;
else
result = 0;

return result;

36

call 40001f5c <Cmp ()>

AN

nop
mov %00, %gl

cmp 3*gl, O
be <else branch> |

v

<if branch>: faHsthrough

mov 1, %gl
stb =gl, [ 3fp + -2 ]
b <end of Cmp()>

<else branch>:

clrb [ %fp + -2 ]

ldub [ $fp + -1 ], %gl
add %gl, -1, %gl

stb %gl, [ %fp + -1 ]
b <end of Cmp()>



FAME Based Design

int ptc = 3; //Pin Try Counter
char devicePIN[b5] = “12824";
int noFault = 1;
int VerifyPin (userPIN) {
if (ptc > 0)
if (Cmp (userPIN,devicePIN))
result = noFault;

else
result = 0;
ptc—-—;
else result = 0O;

return result;
}
SecureTrapHandler () {
if (ptc > 0)
ptc——;
noFault = 0;

37
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EMFI on FAME

Clo .
Leaves T

Clock Tree

[DAC2018]
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EME| on FAME

Global Effect of EMFI Local Effect of EMFI
Injection at clock tree root Injection at clock tree leaves

146 Faulty Flip Flop § =B 24 Faulty Flip Flop &

|
!
l
|
,
|

[DAC2018]
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Software Countermeasures against
Fault Attacks

Karine Heydemann
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Protections against fault injection attacks

Hardware-based countermeasures (e sar et al., 2006]
= Light sensor, glitch detectors (zussaetal, 2014]
= Redundancy ikarakiajic et al, 2013 _ L~
= Error correcting codes (registers, memory)

Too expensive for small devices and no full guaranty

\

Software-based countermeasures |verbauhede, 2011] [Rauzy et al,, 2015]
= Redundancy at function level
= Algorithm-specific protection (e.g. RSA) é
= Ad-hoc protections designed by expert engineers

In practice combination of both in secure elements

h
p @ A white-box introduction to fault attack — HOST 2018 — 04/30/2018 S

\
J
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UNIVERSITE
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SW protections against fault injection attacks

= Manually added
= Tedious, error-prone
= Highly expensive
= Expertise needed

= Need for automation and capitalization
= Cost reduction, availability for non-experts
= Adaptable to a specific product
= Trade-off between security and performance

= Need for generic protections
= Not dedicated to a class of algorithms (crypto)
= Against different fault models / attacker expertise

Q SORBONNE
p A white-box introduction to fault attack — HOST 2018 — 04/30/2018 b U!\IIVERSITE



Software protection against fault attacks

Code hardening

source — = At which code level?
code j= .c — = Source
p !5% — = Code review, portability, independent from tools
compilation )(3}"@? .’ = Compilation
optimisation . . L. .
4 s ) = Adaptability and/or control over code optimization
N ry =  Assembly
bl = ) . . : .
e —Js * Final “attacked code”, low level information available
l = Binary
_ 010110 = Global view, availability of library codes
binary 103000
code 200

/| A
/ &

b -» Multiple needs
i

Q SORBONNE | ¢/
p A white-box introduction to fault attack — HOST 2018 — 04/30/2018 : U!\IIVERSITE .



Outline

= Principle of software countermeasures
= Data integrity
= Code integrity
= Control-flow integrity
= Compiler-assisted code hardening
= Protection against instruction skip

= Loop hardening

Q SORBONNE
p A white-box introduction to fault attack — HOST 2018 — 04/30/2018 b U!\HVERSITE 6



Countermeasures for data integrity

Fault model
= Data corruption

Redundancy-based protections E—— duplcte

compare

= Duplication of instructions involved in the computation
=  Comparison of results of both computations
= Detection of

= Register corruption (rl or r2)

= Load corruption

duplicate

Idr r1, [rO] —

compare

= Need for available registers

add rl, rO, #1

add r2, ro, #1

cmp 2, rl

bne fault_detection

Idr 1, [rO]
Idr 2, [rO]
cmp  r2,rl

b.ne fault_detection

% A. Barenghi et al. Countermeasures against fault attacks on software implemented AES.

5th Workshop on Embedded Systems Security (WESS’10)

p @ A white-box introduction to fault attack — HOST 2018 — 04/30/2018
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Countermeasures for data integrity

Fault model

= Data corruption

Redundancy-based protections
= Data duplication in addition to instruction duplication

=  Detection of

u Memory corru ption Duplicate data,
. Idr r1, [FO] instruction,
" Load corruption and compare

= Register corruption

= High overhead: performance and memory footprint

Idr r1, [rO]
Idr  r2, [rO+offset]
cmp  r2,rl

b.ne fault_detection

Q Reis et al. SWIFT: Software Implemented Fault Tolerance.
International Symposium on Code Generation and Optimization. 2005

p @ A white-box introduction to fault attack — HOST 2018 — 04/30/2018
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Countermeasures for code integrity

Fault model

= |nstruction corruption

Redundancy-based protections
= |nstruction duplication with detection

= Detection of
= One instruction skip

= Some instruction replacements

Idr

rl, [rO]

duplicate
and

compare

Idr r1, [rO]
Idr r2, [rO]
cmp  r2,rl
b.ne fault_detection

@ A. Barenghi et al. Countermeasures against fault attacks on software implemented AES.
5th Workshop on Embedded Systems Security (WESS’10)

p @ A white-box introduction to fault attack — HOST 2018 — 04/30/2018
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Countermeasures for code integrity

Fault model

= Instruction skip

add rl, rO, #1

Redundancy-based protections add rl, r0, #1 p— i L

= |nstruction duplication without detection
= Tolerance to one instruction skip
= Only for idempotent instructions
®= Transformation of non-idempotent instructions

add rX, rl, r2

Transform into add rX rl r2 X rl. r2
add r1, r1, r2 idempotent ’ ’ duplicate add , rL, r
instructions mov rl, rX mov r1, rX

mov ri, rX

Moro et al. Formal verification of a software countermeasure against instruction skip attacks.
Journal of Cryptographic Engineering 2014.

Q SORBONNE
p A white-box introduction to fault attack — HOST 2018 — 04/30/2018 b U!\IIVERSITE 10
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Countermeasures for code integrity

Fault model

= Instruction skip
add rl r0 #1

Redunda})/

= |nstruc
= Tol _ ) _
. on No software protection for full code integrity
. (i.e. against all kinds of instruction replacement or disruption)
u ra

add r\\

mov ri, rX

Moro et al. Formal verification of a software countermeasure against instruction skip attacks.
Journal of Cryptographic Engineering 2014.

Q SORBONNE
p A white-box introduction to fault attack — HOST 2018 — 04/30/2018 b



Fault model
= Jump insertion

Different levels of control-flow integrity

= |ntra basic block

integrity of straight-line code

" |ntra procedural

integrity of control flow transfers inside a function
(control flow graph)

= |nter procedural

integrity of function calls and returns

P &

Control flow integrity

foo2:

instf/\
instN

jsuK/

A white-box introduction to fault attack — HOST 2018 — 04/30/2018

fool:

call foo2
A

g ...

’ call foo3
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Countermeasures for control flow integrity

Counter-based protections (akkar et al., 2003]

foo2:

= Dedicated counters incremented between instructions

= Check of their values at some specific points

= Intra basic block scheme
= Detection of intra basic block jumps

&

cnt - val‘/\

instl
cnt++
cnt++
instN
cnt++
cmp cnt, end_val

b.ne <error>
j next

A white-box introduction to fault attack — HOST 2018 — 04/30/2018

fool:

YN call foo2

7

y e

call foo3
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Countermeasures for control flow integrity

Counter-based protections f \

= Protection scheme for C control-flow constructs

= Fault models 4 )
= Jump insertion
= Test inversion

4
= Objective

= All statement must be executed \_ region /
" inthe right order
= as expected according to the execution context

= Or an attack must be detected \ regioJ

Q SORBONNE
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Countermeasures for control flow integrity

= Region-based protection scheme: straight-line regions, if-then-else

constructs, switch constructs, loops with or without early exit or
continue, function calls

* Each region has its own protection counters and may use extra

variables to hold the condition values that influence the control
flow (e.g. loop exit condition)

= Nesting and overlapping of the protection of regions in order to
guarantee that an attack will eventually be detected

J-F. Lalande et al. Software countermeasures for control flow integrity of smart card C codes.

Llp ¥ EsoRICs 2014,

cnt2 = val2
cnt3 ++

ﬂ:ntz ++ \

f_ cnt ++ \

cnt2 ++
cnt = val

cnt2 ++

cnt ++

cnt ++

T4

cnt ++

\ cnt ++ regi

cnt2 ++
check(cnt)

cnt2 ++

\cntz ++ regioJ

cnt3 ++
check(cnt)

w2 SORBONNE
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Countermeasures for control flow integrity

Signature-based protections (on et al. 2002) f602: -
[Goloubeva et al., 2005] SN
mov rs, id2 \‘\ f001:
= |dentifiers are assigned to basic blocks RN '
. \\
(and fUI’]CtIOI’]S) check(rs, id2) \\\
, Y call foo2
= Use to check every single control flow transfer _ , y
mov rs, |(MV rs, id4 KA
. . .. o . 4
= Global signature computation enables to limit check(rs,id3)  check(rs, id4) A
/ | call foo3
the number of checks mov rs, Id5 mov s, id5 !
U
= Only protect control flow transfers \/ /
check(rs, id5) Il
. . 7
Combination [siep, 2003] /]
. . mov rs, id2 Y}

= Step counters inside basic blocks mov rs, ide/

and signature for control flow transfers check(rs, id6) /I
U

/

Q SORBONNE
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Outline

= Principle of software countermeasures
= Data integrity
= Code integrity
= Control-flow integrity
= Compiler-assisted code hardening
= Protection against instruction skip

= Loop hardening

Q SORBONNE
p A white-box introduction to fault attack — HOST 2018 — 04/30/2018 b UNIVERSITE 17
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Protection at compilation-time ) _

(" D
Compilation
. . . . . Front-end
= Protection scheme against instruction skip [voro et al. 2014] L )
= Main principle: duplication of idempotent instructions e | I |
o Middle-end
= Take advantage of compilation flow to 8 J
= Force the generation of idempotent instructions ; ’/—‘—Q‘
= Modification of the instruction selection B / BT
= Modification of the register allocation o) 'ZZTZLQ‘EET
= Additional transformation for remaining non-idempotent instructions | |
(e.g. push and pop instruction that use and modify the stack pointer) aﬁii':ttgn
= Add aninstruction duplication pass \
.. ) | Idempotence
* Let the scheduler optimize the duplicated code ' | transformation
\‘ '
= Automatically protected code with better code size and performance \‘ Duplication
8
Instruction
scheduling f

@ T. Barry et al. Compilation of a Countermeasure Against Instruction-Skip Fault Attacks. CS2 2016.

I Q SORBONNE
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Compile-time loop hardening

Motivation
= Several attacks exploit a corruption of loop iteration count void aes_addRoundKey._cpy(
(early or deferred exit) b aemtot oy
= Buffer overflows [Nashimoto et al. 2017] e register uint8_t i = 16 ;
=  Cryptanalysis by round reduction [pehbaoui et al. 2013, Espitau et al. 2016] hile (o)
= Authentication process [Dureuil et al., FISSC, 2016] {
buf[i] ~= keyl[i] ;
Considered fault model ziﬁﬂglkzyﬁifmﬁ] ;
= Oneinstruction skip ’
= Or one general register corruption d

= During loop execution

uuuuuuuuuuuuuuu
nnnnnnnnnn

—— ——
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Loop hardening scheme

Goal

= The loop performs the right iteration count and exit
from the right exit, or an attack is detected

Protection principle
= For each loop exit, check its outcome

Realisation
= Duplication of all the instructions involved in the
computation of an exit condition
= Addition of verification basic blocks on all the
paths following from an exiting block
= Protection of the internal control flow that may
impact an exit condition

p @ A white-box introduction to fault attack — HOST 2018 — 04/30/2018

[ pre-header ]
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Loop hardening scheme |

pre-header]

Goal

= The loop performs the right iteration count and exit
from the right exit, or an attack is detected

Protection principle
= For each loop exit, check its outcome

Realisation
= Duplication of all the instructions involved in the
computation of an exit condition
= Addition of verification basic blocks on all the
paths following from an exiting block
= Protection of the internal control flow that may
impact an exit condition

[ exit ]

p @ A white-box introduction to fault attack — HOST 2018 — 04/30/2018



Loop hardening scheme

For each exit of a loop

= Determination by a backward analysis of the instructions
involved in or in an condition of a branch
that may influence an exit condition

= |nstruction duplication
= Creation of a second data flow leading to a duplicated value of
the condition, independant from the original one

= Addition of verification blocks
= Checks of inside and outside of
the loop to verify the exiting branch
= Checks of the duplicated conditions of the internal branches on
all possible following paths
= Call to a fault detection handler

T |

)
Ip @ A white-box introduction to fault attack — HOST 2018 — 04/30/2018
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Loop hardening pass and a compilation flow

Automaton and insertion in a compilation flow

=lc [ )
" |Implemented in a compiler (LLVM 3.9+) at the intermediate level Front-end
* independence from the target architecture \ )
» |nsertion after optimisation passes that may alter the protection : Middle-endw
:’b;,k / Loop hardening

pass

.| Back-end ]

| Instruction
Harmful post-securing transformations and optimisations \ \ selection

Experimental results 0%
= 99% of harmful simulated fault are detected

o
SRACTTTE
J

@5

’

e

et |
“reLMy,

. .. . ‘ I
= All kind of redundancy elimination \ Regster
= |nstruction selection, register allocation, code placement optimisation

\ allocation
\\ ‘ ”

Code placement

=» Compiler is not compliant with protection / security properties . ,
=>» Need to analyse the generated code % <

=>» Need to deactivate, adapt, or add some passes to ensure the security property

Lip @ % J. Proy at al. Compiler-Assisted Loop Hardening Against Fault Attacks. ACM Transaction ™\ SORBONNE

on Architecture and Code Optimization. December 2017 S UNIVERSITE " 23
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Summary and conclusion

= Various types of protection

= Large set of fault models / attacker capabilities
= Need of automatic code hardening and against a large set of (faults) attacks

= Compiler-assisted code hardening
= Framework enabling the analysis and the preservation of security properties
" |nthe compilation flow

= For a post-compilation robustness analysis

= Combination of protections

= |nteraction between protections? Stacking or smarter combination?

Q SORBONNE
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Countermeasures for code integrity

Redundancy-based protections

= More complex transformation of non-idempotent instructions

= The function call example

add rd, return_label
add 4, return_label

add  r4, return_label add Ir, rd, #1
. add I, r4, #1
Tr.ansform into add |r, r4’ #1 .
bl @fct idempotent duplicate b @fct
i i b @fct
instructions b @fct
return_label:
return_label:

Moro et al. Formal verification of a software countermeasure against instruction skip attacks.
Journal of Cryptographic Engineering 2014.
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