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Platform Security Assurance

Review the overall platform
for attack opportunities 
which undermine security objectives
in ways not covered by traditional approaches
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Tutorial Goals

§ Explain the scope of SoC platform security

§ De-mystify and comprehend many of the 
security activities performed in practice today

§ Discuss limitations in current state of practice

§ Present some emergent solutions

A significant emphasis is on current industrial 
practice (and its limitations)

4



All Rights Reserved

Traditional Computer
Security
vs.
Modern SoC Security
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How can we minimize vulnerability 
of our computing systems to 
malicious attacks?
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“An embedded system is a combination of hardware and 
software, and perhaps additional electrical or mechanical parts, 
intended to provide a dedicated function” 

― Michael Barr, Programming Embedded Systems, 1999

Changing Computing Landscape…

General-purpose systems
§ Complex, optimized  architecture
§ Versatility and programmability
§ Diverse use-case scenarios§ Customized  design

§ Unique use-case constraints
§ Tight HW/SW integration

Embedded systems

“An embedded system is an electronic system that uses a 
computer chip but is not a desktop, laptop, or server” 

― PC Magazine, 2012

§ Customized  design
§ Unique use-case constraints
§ Tight HW/SW integration
§ Complex, optimized  architecture
§ Versatility and programmability
§ Diverse use-case scenarios

How can we minimize vulnerability of our highly 
complex modern computing systems to malicious 
attacks?
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Services

Things

Cloud
Applications

Network

….In a Highly Connected World….

“City of Hamburg and CISCO launch plan 
for smart city of the future”
BBC World News, May 1 2014

How can we minimize vulnerability to malicious 
attacks of diverse, highly complex computing 
systems in hands of possibly naïve users, operating 
in an environment of billions of complex, error-
prone, possibly malicious communicating devices?

8



All Rights Reserved

…Created By Complex Supply Chain…

IPs

Fabrication

Assembly and Test

Source: FICS

How can we develop trustworthy, dependable, 
usable computing infrastructures with billions 
of smart, highly complex, connected computing 
devices, operating in a potentially malicious 
environment, and developed by a complex 
supply-chain of untrustworthy players?
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…Built Under Aggressive Schedule…

Product Timeline

Planning ProductionDevelopmentExploration

3-4 years< 1 year

How can we develop trustworthy, dependable, usable 
computing infrastructures with billions of smart, 
highly complex, connected computing devices, 
operating in a potentially malicious environment, and 
developed by a complex supply-chain of 
untrustworthy players within a strict time-to-market 
requirement?
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Different Faces of Security

Device Security
• NFC and RFID
• Hardware primitives such 

as PUFs

Platform Security
• HW/FW/SW Interactions
• System-level Policies
• Design and development 

of security architectures 

Cloud Security

• Mobile cloud
• Cloud clients and

infrastructures

11



All Rights Reserved

Scope of Platform 
Security

(10 mins)
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Platform Security Assurance

Review the overall platform
for attack opportunities 
which undermine security objectives
in ways not covered by traditional approaches

• All software, firmware, and hardware
• Including third party
• Potentially including services
• Don’t forget the board

• All reasonable attacker starting points
• Software, physical access

• All reasonable attacker motivations
• Data theft, jailbreaking, DRM bypass, remote 

access, DoS, …. 13
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Platform Security Assurance

Review the overall platform
for attack opportunities 
which undermine security objectives
in ways not covered by traditional approaches

• Feature security objectives
• Architectural security objectives
• OS and App security objectives
• User’s security expectation

• Minimize duplication of efforts
• Find gaps in current approaches

• Third party interactions
• ….
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CanSecWest 2015

Attack on Intel BIOS for X86-Based Computers
- Exploits X86 architectural vulnerability
- 3161 Shipped BIOS images, 3 vulnerabilities, only 12 misses!

15
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CanSecWest 2015

Attack on Intel BIOS for X86-Based Computers
- Exploits X86 architectural vulnerability
- 3161 Shipped BIOS images, 3 vulnerabilities, only 12 misses!

But BIOS can be patched, so I needn’t worry, right!
- In reality, most people do not patch BIOS
- Since BIOS code is reused, infection is reusable and automatable

This all carries over to our smartphones and hand-
held devices, while introducing more vulnerabilities
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Mobile Devices: Attack Surface
Attacks on Privacy via 
malicious apps and in-

app Ad libraries

SMS

Calender

Pictures

Location

Contacts

E-Mails

Music Browser Attacks

Malware (e.g., Games)

Premium-Rate 
Services

Hardware Attacks

Exploit Mobile 
Cloud Apps

Mobile Network 
Attacks

SIM and SD Card, 
NFC

Baseband
and 3G

Sensor Malware
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Planning ProductionDevelopmentExploration

SoC Design Flow

Tape-
out

1st

Silicon PRQ

Pre-silicon Post 
silicon

Survivability

SW/FW

HW

Security 
Assessment 

Security 
Validation

Security 
Architecture

Threat modeling
Architecture review
Design review
Security Test plans
Architectural FV

Security 
Validation

Code review
RTL Testing
RTL FV

Security 
Validation

Penetration 
Testing

Risk Review
Architecture Definition
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Assets, Policies, and 
Enforcement
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The “CIA” Pillars

Confidentiality

Availability

Integrity

− Read access control of sensitive data
− Authorization and authentication are essential

− Write access control of sensitive data
− Authorization and authentication are essential

− Fault tolerance, Robustness, Handle bad inputs, DoS
− Fail safe, handle exceptions safely and securely
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What’s in Security Policy?

− Keys (Developer/OEM)

− Premium content

− End user information

− (Firmware) Execution 

flows

− Debug modes

− ….

− ….

− Confidentiality

− Integrity

− Anti-replay 

− Privacy Aspects

− ….

− ….

Policy

Assets

Protection Requirement

• Multiple owners over lifetime of the parts
• Multiple IPs that do not trust each other
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Access to Assets

Manufacturer Service 
ProviderOEM

Security
Engine

Graphics
Engine

Secure 
Element

Fuse
Controller

Memory 
Controller

DRAMKeys

SoC

ContentKey
Storage E-wallet

Control
Reg Sensor 

Data

Stakeholders

Stakeholders provision Assets 
such as Keys, E-wallet which 
reside in SoC building blocks 
such as Fuses, Secure 
Element etc. 

For every access to 
assets and building blocks 
holding and managing them, 
determine:
Who is accessing the asset?
What actions are requested?
When access is requested?

As Assets flow through the 
various SoC building blocks 
during boot, additional assets 
are created at runtime
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Example: Master Key

Who When How Condition

Firmware Boot Read Internal 
boot

Who When How Condition

Any After 
Boot

No
read

Any

Boot Runtime Execution 
phase

Who When How Condition
OEM Prod Write Authen-

ticated

Who When How Condition

Customer Deploy No
write

Any

Production Deployment Product 
Life-cycle

Master key is the root of all key blobs used by the cryptographic 
engines in the chip.  Other keys are derived from it.
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More Complexity: Fabrics

High-speed, coherent
Fabric

CPU

DRAM

IP IP

Low-speed
Fabric

IP

GFX

Communication 
Fabric

Router Router

− Message immutability
− Redirection prevention
− Masquerade prevention
− Non-observability

• BARs used to get to the destination
• Transactions over some fabric subject 

to redirection by host OS
• Cannot trust OS controlled BARs
• Alternate routing mechanism 

necessary for secure communication
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Industrial Primitives
• ARM Trustzone

- Partition HW and SW resources into secure and insecure worlds
- HW supports access control, permissions, and communications
- SW supports secure system-call / interrupts for run-time execution

• Intel SGX
- TEE to protect applications against malicious OS 
- Applications can create secure enclaves as “islands of trust”
- Implemented as a collection of new CPU instructions

• Samsung KNOX
- Partition between business and personal content 
- Hot swap between the two worlds

25
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Enforcement Requirements
• Standardized language for security policies

• Tools to synthesize policy implementations 
• Parameterized, instantiable policy architecture

• Effective validation strategies

­ Some progress made on each vector by 
academic/industrial research

­ But a large gap remains between the state of 
the art and what we need to be effective

26
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SoC Security 
Validation

27
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Planning ProductionDevelopmentExploration

SoC Design Flow

Tape-
out

1st

Silicon PRQ

Pre-silicon Post 
silicon

Survivability

SW/FW

HW

Security 
Assessment 

Security 
Validation

Security 
Architecture

Threat modeling
Architecture review
Design review
Security Test plans
Architectural FV

Security 
Validation

Code review
RTL Testing
RTL FV

Security 
Validation

Penetration 
Testing

Risk Review
Architecture Definition
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Science and Art of Security Validation

ArtScience

Functional 
validation of 

features providing 
security assurance

White Box Expert 
HackingNegative Testing

Validation of 
Deterministic 

Security 
Requirements

Well-defined / Low Complexity Exploratory  / High Complexity

Example: Crypto 
engine encrypts and 
decrypts data 
correctly on all modes

Crypto, secure boot, 
patching, etc. 

Access control restrictions, 
address translation, etc.  
Bugs are likely overlooked 
during normal usage 

Example: Calls to DMA 
access to DMA-protected 
memory range through 
DMA address translation 
regs. must be aborted

Look beyond what is 
specified, see if 
security objectives can 
be subverted or are 
underspecified

Example: Are there 
other paths to protected 
DMA memory in addition 
to DMA address 
translation regs?  How to 
activate them?

Goal-oriented 
attempts by expert 
hackers at breaking 
security objectives 
(often at HW/FW/SW 
divide or chip 
boundary) 
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Three Easy Steps to 
Validation

− Identify the security objectives
−Model  the security threats
−Validate objectives against threats

30
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Adversaries in SoC Security
Asset owners
− Manufacturer, OEM, End user

−Adversary Capabilities
− Unprivileged software adversary
− System software adversary
− Software side-channel/covert-channel adversary
− Simple hardware adversary
− Skilled hardware adversary
− Hardware reverse-engineer adversary

Adversaries
− Manufacturer, OEM, End user
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Modeling Threats

Define/ Review Security 
Objectives

Identify/ Review System 
Assets

Define Protections and 
Mitigations 

Update Specs and Iterate

Define/ Review trust Levels & 
Entry points

Enumerate and Rank threats 
Product Specs

Section 1

Section N

.

.

.

Security Section(s)
Security 

Objective 1

Security 
Objective 2

Threats
Attack Points
Test Strategy

Etc

Mitigation 
Strategy and 
requirements

Etc

Product Specs

Prior Issues

Usage Models

32
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Example: Code Injection Threats

Boot Code
ROM

Embedded 
Core

Cache
SRAM

DRAM

Secondary Storage
(HDD, Flash, etc)

SR-1: Protect memory range from
access by untrusted DMA engines.

SR-2: Prevent direct access to internal
memory from untrusted code.

SR-3:Write-protect non-
volatile memory region.

Security Objective:
Prevent Code Injection in storage and 
runtime memory

Assets:
Cache SRAM, DRAM, Secondary 
storage

Threats:
• Untrusted device access to DRAM 

through DMA
• Write to internal cache SRAM
• Corrupt secondary storage
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Threat Analysis: Complexity
− Model perspective

− Entry point identification

− Risk Assessment

− Attacker-centric, starts with attacker motivation and ability
− Asset-centric,  starts with assets
− System-centric, starts with system execution flow

How many entry points are there:
− Debug feature?  Crypto keys?  Display ports?

− Damage Potential
− Reproducibility
− Exploitabiliy
− Affected Systems
− Discoverability

34
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Validation Activities Summary

• Fuzzing
− Determine behavior on unexpected inputs

• Penetration Testing
− Focused tests to exploit vulnerabilities

• Formal Verification
− Using static/formal techniques

• Hack-a-thon
− Concerted hacking by a group of experts

35
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Fuzzing

A method for discovering faults in design by 
providing unexpected inputs and monitoring for 
exceptions

Fuzzer
Vectors

• Long strings
• Symbols
• Bit flipping
• Large integers

Interface Observed 
behavior

• System hang
• Crash
• …

• Buffer overflows
• Integer overflows
• Access violations
• Unhandled exceptions

• DoS
• Race/Timing errors
• Memory leaks
• …

36
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Fuzzing  Approaches
Dumb/Mutated

Smart/Generated

• Random inputs or randomly mutated valid input, throw 
any and all at it

• Easy and fast to apply

• Generated anomalies based on comprehensive 
knowledge of target

• Significant up front investment
• Greater coverage
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Penetration Testing

A penetration test is an attack on a computer system with the 
intention to find security weakness, potentially gaining access 
to it, its functionality, and data

• Enumerate the attack surface
• Exploit/perform the attack
• Analyze results against objectives

38
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Penetration Testing: 
Vulnerability Detection

“Easy”:
− Documentation Review
− Known vulnerability
− Missing patches 
− Out-of-date software
− Known Misconfigurations
Moderate
− Related Misconfigurations
− Related Vulnerabilities
− Tool Smorgasbord
Hard
− Component Analysis
− Vulnerability Classes
− Platform Horizontal/Integration Testing
− Vulnerability Research 39
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Formal Verification

Heavy-weight
Full verification of critical modules, e.g.,  cryptographic core 

Light-weight
Using static analysis methods to exercise different system paths and 
expose vulnerabilities

Use of  mathematical and symbolic methods to 
formally prove a desired property of the system
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Formal Verification: Case Study

Is the firmware that is 
finally loaded always 
the authenticated 
firmware?

No

• A counterexample requires 3 concurrently running flows 
with the right interleaving

• Difficult to achieve through penetration testing or fuzzing

Krstic et al., 2015
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Security and 
Debug Challenges

42
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Issue at Hand

-Security is critical for modern computing systems

-But also critical is our ability to validate 
and debug these systems

Security and validation/debug requirements 
are, for the most part, not in conflict

Big Exception: Post-silicon Validation 
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Basis of the Conflict

-Security requires protection of assets and secrets 
from indiscriminate/unauthorized access

-Post-silicon validation and debug require 
observability and controllability of internal signals 
of the design  

• Can we satisfy both these requirements?
• If there is a trade-off, how can we resolve it?
• How serious is the problem?
• What do we do today? Why is it inadequate?
• What factors should a solution consider?
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Planning ProductionDevelopmentExploration

What’s in Validation?

Tape-
out

1st

Silicon PRQ

Pre-silicon Post 
silicon

Survivability

SW/FW

HW

Code Reviews
Simulation and Testing
Hardware Acceleration / FPGA
Formal Analysis

+ High observability
+ High control
- Inaccurate physical models
- Poor tool scalability

45
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Planning ProductionDevelopmentExploration

What’s in Validation?

Tape-
out

1st

Silicon PRQ

Pre-silicon Post 
silicon

Survivability

SW/FW

HW

Focused Logic Tests
Large Software Applications
Electrical Parameters
Physical Stress Conditions

+ High execution speed
+ Exploration of deep states
+ Accurate physical behavior
- Limited observability and control
- Error sequentiality
- Noise

46
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Planning ProductionDevelopmentExploration

What’s in Validation?

Tape-
out

1st

Silicon PRQ

Pre-silicon Post 
silicon

Survivability

SW/FW

HW

Firmware/software patches
Reduce features

- Very limited observability/control
- Limited defeature bits
- Time

47
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• With real silicon
• Typically running actual software and application

What is Post-silicon Validation?

Ensure that  (pre-production) chip behaves as expected

• Compatibility Validation (CV)

• System Validation (SV)

• Marginality/Speed-path Validation (MV)

• Electrical Validation (EV)

Logic correctness (using specialized synthetic tests)

Compatibility with apps, OS, add-ons, etc.

Validation of electrical properties, noise margin

Identification of frequency-limiting paths

• Performed under aggressive schedule
• Requires expensive, elaborate setup
• Requires significant up-front planning

48
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Post-silicon Validation Flow

Planning ProductionDevelopmentExploration

Tape-
out

1st

Silicon PRQ

Pre-silicon Post 
silicon

Planning SteppingsDevelopment

Test plans
On-chip Instrumentations

Findings

Retest

Coverage metrics
Debug SW
Tests
Test boards / cards 49
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§ To validate/debug a design we need to observe updates to 
different signal values during execution

§ To observe a signal, we must instrument the design to funnel its 
value to an observation point

On-Chip Instrumentation

• We can only select a very small number of signals

Millions of multi 
gigahertz internal 
wires 120K block-to-
block wires

Approx. 100 
external wires

• Observable signals must be determined pre-silicon

• Observability problems are experienced post-silicon

• Fixing  inadequate observability requires a new silicon 
stepping (and is often impossible)

50
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§ Used for critical properties
§ Currently purely manual, based on designer intuition

On-Chip Instrumentation Practice

Custom Instrumentation

― State observability, e.g., scan, memory dump
― Trace observability, e.g., for events, messages
― Access infrastructure, e.g., JTAG, microcode patch
― Trigger, e.g., hardware assertions
― Programmable microcontrollers
― Misc., e.g., defeatures, coverage monitors, counters

Generic Instrumentation Architectures
§ Too many to enumerate or even comprehend fully
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Some Consequences
XBOX 360 JTAG Hack

• Use JTAG port to write to firmware memory
• Update firmware 

– New FW permits unauthorized code execution
• A common approach to attack SoC
- Similar approaches to jailbreak smartphones

Solution is NOT to disable update via JTAG
52
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Why is it not just a security Policy?

Firmware upgrade policy:  Restrict type of 
firmware upgrade permissible through JTAG 

Not much different from any other security 
policy!!

• Ambiguity
• Observability requirements are rarely clear-cut

• Feed-through
• Routing signals through high-security modules

• Lack of centralization
53
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State of the Practice

• Start with high instrumentation and little security 
during design and early validation phase

Primarily based on human creativity, although 
there is some method to the madness

• Progressively disable debug features and tighten 
security requirements as we advance in design life-cycle 

• Permit on-field debug temporarily under special 
circumstances

• Highly complex design requirement
• Does not account for
- 3rd party IPs with assets protected from 
validators
- Rogue IPs
- … 
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Considerations for Solution
• HVM Challenges

− Reuse same test patterns, provide simple access, high coverage

• Validation Challenges
− Support efficient functional debug while protecting secrets

• Reusability Considerations
− Across different types of assets and usage models

• Control logic Issues
− Centralized, easy to follow, validate, check for leaks, etc.

• Observability Considerations
− Self-securing, reduce/eliminate temporal attacks 

• Variability Challenges
− Robust against late changes
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Security in IoT

56
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The Internet of Things Regime
The IoT Regime is the point of time when 
the number of connected computing 
devices exceeds the human population.

IoT involves a connected network of 
physical objects or “things” embedded 
with electronics, software, and sensors, 
to enable it to behave smartly and 
achieve greater value.

--- Cisco White Paper, 2011

--- Wikipedia

Source: Intel

Source: Cisco

Computers smaller than a grain of sand 
can be spread anywhere to measure 
chemicals in soil or problems in human 
body

Smart Dust

Fixed and mobile 
sensors dispersed 
throughout the city 
of Dublin are 
already creating a 
picture of  what’s 
happening and will 
help the city in the 
time of crisis.

Smart City
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E2E View of IoT

Sensors
Active/Passive Tags

HVAC, Fitbit

Factory, Building, 
Car

ISP Routers, 
Firewalls

Enterprise Cloud, 
DC

Components of Things

Things

IoT Gateways

Network 
infrastructure

IoT Cloud 
Datacenters

Too many configurations of sensors, devices, and gateways connected 
and delivering data 
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An All-Encompassing 
Ecosystem

Nothing in 
computing (or 
anywhere else) 
left behind

59
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Type of 
Developer

Considerations 

Hobbyists; 
Students;  
Makers

• Low Cost solutions; open development environment
• Dev Support

Entrepreneurs; 
Start-ups

• Accelerated TTM
• Build Cost
• Support/ Maintainability
• Productization support 

Traditional OEMs • Interoperability/Connectivity with existing  solutions.

Existing 
Producers 

• Interoperability/Connectivity with existing  solutions

• Ability to connect with devices outside closed ecosystem 

A Disparate Stakeholder Pool
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The Security Story

Cloud increases data exposure to security threats

Internet of Things magnifies the amount of data 
and diversity of data collection sites

Walden C. Rhines, 
Mentor Graphics,  
2016
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Long, complex life cycle

Mass produced in same configuration

Machine-to-machine

Normal C-I-A often reversed 

Some Unique Features of IoT

Equipment never intended to be connected

Many traditional protection mechanisms not applicable due to 
form factor, deployment, power constraints 

Requires holistic view of device to gateway to cloud 
and the communications between them
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Challenge from Long Life: Post-
Quantum Crypto

Problem: 
- Quantum computers may come into existence between 2030 and 2050
- They will 
- break RSA and ECC
- find n-bit AES keys and pre-image of n-bit hash in time 2n/2

-Designs that depend on crypto are at risk 

IoT systems that are expected to survive till 2030 and 
beyond should account for this risk
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Why is this hard?

Algorithm Attack Ops on Classical 
Computer

Ops on Quantum 
Computer

AES – 256 bit 
key

Cryptanalysis 2256 2128

SHA2 or SHA3
– 384 bit hash

Find Pre-image 2384 2192

Find Collision 2192 2128 with 2128

RAM

There are of course known ways to address the crypto 
issue 

• Replace all use of symmetric crypto with AES-256
• Replace all use of cryptographic hash with SHA2 or SHA

For all uses of crypto that cannot be modified 
on field, are these assumptions sufficient?
How do we validate such a requirement?
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Configurability Needs
• Long device life

• Large OEM ecosystem

• Product/platform diversity

– Policy and implementation upgrades, on-field adaptation

– Flexibility for implementing (and upgrading) policies 

– Quick policy configurability for different platforms and form factors 
and derivatives

• Dynamically changing user security needs

• How do we capture such requirements?
• How do we add resilience implementing such requirements?
• How can we validate them, with aggressive TTM schedule?

65
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Infrastructure IP for 
Security: A Scalable Solution 

for Secure SoC

66
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Background: Infrastructure IP
• System-on-chip (SoC) design using reusable IP 

blocks is a prevalent practice!

• Most IPs are functional

– CPU, memory, DSP, crypto, comm., analog, ……

Infrastructure IP – A special class of non-functional IPs incorporated 
during SoC integration to facilitate test/debug/verification!

Infrastructure IP for Security (IIPS)* – A non-functional IP that interfaces 
with existing IPs in an SoC to implement hardware security features!

* Wang, Basak, & Bhunia, IEEE Tcomp,  2015
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Infrastructure IP for SoC Security (IIPS)
• IIPS contains multiple security primitives to provide various 

security protections for an SoC
• Features of IIPS

1. Ease of integration; plug-n-play using IEEE 1500 Standard
2. Centralized
3. Minimal performance/power/area overhead 
4. Functionally scalable and flexible
5. Configurable
6. Does not affect IP level design & IP integration in SoC
7. Can be merged with other (e.g. test) infrastructure IPs
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IIPS: Summary
Flexibility:
• Flexible in interfacing with enhanced configurations of IEEE 1500 arch. 
• Effectiveness can be improved with advanced features of IEEE 1500

– ScanPUF & Trojan detection can be adapted to use the parallel interface
– Broadside capture can be applied for detecting Trojans in system buses

Functional Scalability:
• Can provide protection against other attacks / other  protection schemes
• Can be configured at both design & run time
• Can be integrated with test support logic to reduce overhead & effort

Configurability / Sunthesizability:
1. Configurable IIPS IP block 
2. Amenable for automatic synthesis of IIPS in a SoC design

69
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Using IIPS for Security Policy 
Enforcement

Basak et al., DAC 2015
Basak et al. ICCAD 2015

Basak et al., IEEE TIFS 2017
Ray et al., IEEE Spectrum 2018

Ray at al., PIEEE, 2018
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• Security assets in SoC spread across different IP blocks
• Assets: Crypto cores, programmable fuses, DRM keys, 

firmware, user data etc.

• Access restrictions governed by SoC security policies

• Policies often involve subtle interactions between IPs

• Natural language representation in architecture documents
– Often ambiguous & complex 

– Often continuously refined during SoC integration

– No systematic method

E-IIPS: Extended IIPS 

E-IIPS enables systematic & flexible implementation of 
diverse SoC security policies!
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A systematic way to address diverse SoC security Issues

• Wang et al., IEEE Tcomp,  2015
• Ray et. al., DAC 2015
• Basak et al., ICCAD 2015 
• Basak et al., TIFS 2017

Proc. Mem

Crypto Comm.

So
C Trust/Security Issues:

• Authentication
• Hardware Trojan
• Scan based attacks
• Side-channel attacks
• Diverse security policies

Infrastructure 
IP for Security

Centralized, plug-n-play, 
configurable security-brain

Security Wrapper

• Reduced design effort/cost!
• Improved security
• Improved debug
• Protection against unanticipated

attacks (a “hardware patch”)
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Security Policies
• Security assets in SoC spread across different IP blocks
• Assets: Crypto cores, programmable fuses, DRM keys, firmware, user 

data etc.
• Access restrictions governed by SoC security policies
• Policies governing confidentiality, integrity & availability of assets
• Policy Categories: (1) Access Control; (2) Information Flow; (3) Liveness; 

and (4) Time-of-Check Time-of-Use (ToC-ToU)

Ex. 1 – During boot, data transmitted by crypto-engine cannot be observed 
by any IP in the SoC other than its intended target (Confidentiality)

Ex. 2 – A secure key container can be updated during silicon validation,      
but not after production (Integrity)
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Proposed Architecture
“E-IIPS” (Extended IIPS)

• Implements SoC security policies 

• µC based design

• Policies programmed as F/W in 

secure NVM – easy to patch/ 

upgrade!

– Authentication during 
upgrade

“Security Wrapper” around IPs
• Extension of std. test/debug 

wrappers

• “Smart” – only security relevant 

events communicated to E-IIPS

– Reduces comm. bottlenecks
74



All Rights Reserved

Security Wrappers • Wrappers abstract out 

internal IP details!

• Std. variable length 

frame based comm. w/ 

E-IIPS

• Request & Control
signals from E-IIPS

• E-IIPS configures 

wrappers at boot time

• Events standardize 

within IP types e.g. 

memory, processor, 

comm. core

• Memory IP: 

memory/cache 

controllers etc.

– Events: IP read/write 

requests, power down

– Metadata: address, DMA 

channel, burst size
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E-IIPS – Security Policy Controller

E-IIPS Functions
• Analyze events 

from IP wrappers
• Determine system 

security state 
• Communicate IP 

specific request & 
disable 

Major Components
• Security Buffer – Storage for IP event logs
• Policy Enforcer – Execution engine (µC)

– Configurability at design time
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An Example Mapping
Policy: DMA accesses prohibited for system specific addresses

Extended IIPS DMA engines + Wrapper Memory Controller + Wrapper

Configure secure system 

address range and      

DMA I/O channels
Configure platform I/O 

channel no/addresses

Store address range in wrapper 

configuration register

RequestDMA
interface 

Address sent through Requestmem_control
interface 

DMA access flag set (request)

Address

Data

No

G
ra

n
t 

a
c

c
e

ss
 t

o
 

m
e

m
o

ry
 b

u
s

Yes

Block DMA request

Event frame

Increment 
violationcount

No

Keep DisableDMA 
as it is

Yes Assert DisableDMA to block DMA for 
that channel and notify processor

B
o

o
t 

ti
m

e
 

c
o

n
fi

g
u

ra
ti

o
n

N
o

rm
a

l 

E
x
e

c
u

ti
o

n

D
M

A
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io
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d
e

te
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s
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d

V
e
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 D
M
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c
o
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n

ts
 

Ti
m

e

Addr. in sys. 

range?

Count = Max ? 
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Overhead Analysis
Functional SoC Model
• IP cores (Verilog RTL) 

from open source

• DLX RISC µP (5 stage), 

128 pt. FFT engine, 128-

bit AES core, SPI 

controller core

• IEEE 1500 boundary 

scan incorporated

• IPs have addresses 

mapped to memory

• Point-to-point 

connections

• Functionally validated 
with Modelsim
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Results 
E-IIPS

• Policy Enforcer: DLX RISC 

µP core

• Security Buffer: 4 KB, 32b 

frames

• Instruction Memory: 4 KB

• Data Memory: 1 KB 

• 2 bit req. & disable sig.

• Memory areas from CACTI 

SRAM models 

Security Wrapper
• Example Events: Memory 

RD/WR (memory controller), 

transfer start/stop (SPI) etc.

SoC Org. Area 
(µm2)

E-IIPS 
Overhead (%)

Model 13.1x106 21.7

Apple A5 
(APL2498)

69.6x106 4.06

Intel Atom 
Z2520

41x106 7.1

IP Org. Area 
(µm2) 

Wrapper
Overhead (%)

AES engine 101620 2.1
SPI controller 3947 9.2
DLX RISC µP 290496 6.8
FFT engine 1810 10.1

E-IIPS Overhead

Wrapper Area Overhead
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Can on-Chip Debug Architecture 
Help?

Basak et al., DAC 2016
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Details on Security-Debug Integration

Minimal (typical) H/W overhead 
in security wrapper to local 
trace cell interface

Representative Central Policy Controller to 
DfD Interface

Experimental framework for H/W 
Overhead/Power Analysis

• Certain use case scenarios of security 
policy implementation using DfD
instrumentation have been analyzed 

• At boot, E-IIPS configures these DfD cells
• Debug functionality / usages not hampered 
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Debug Interface with Security Architecture

A. Basak et. al, DAC’16  

Methodology DfD Re-purposing Constraints 
• Required local DfD configuration register address 

/values extracted from debug program model 

• SoC designer stores them in E-IIPS

• At boot, E-IIPS configures these DfD cells 

• During normal execution, the local DfD detects 
events of interest and sends them to E-IIPS

• Debug functionality / usages not 
hampered

• System energy / power profiles not 
significantly affected

• Small H/W overhead for DfD-security 
interfacing

• Separate triggered DfD port to wrapper (event transport)

• Configuration register based unique event identifier

Wrapper-local DfD
• Addition in Debug Access Port (DAP)

• Configuration link from SPC to DAP

SPC-DfD interface

W
ra

pp
er

 to
 lo

ca
l D

fD
 C

om
m

. I
nt

er
fa

ce
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An illustrative Use Case Scenario

µP Embedded Trace 
Macrocell (ETM)

Ti
m

e

Security Policy 
Controller

I/O Non-Interference Policy: When CPU is executing in high security mode, I/O devices 
on SoC platform cannot access protected data memory

Debug Access 
Port (DAP)

µP security 
wrapper

DMA engine

Configure secure 
mem. range and 
ETM events like 
“prog. counter in 
secure range” & 
“DMA access to 

secure data page”

Grant SPC AP 
access to DfD 

config. bus
Program config. 

register for    
security events 

Configure 
wrapper events

if applicable 

DMA 
channel, 
memory 
address 

configure

Address/data

Address/data/controls

debug config. bus

Boot F/W

Address in 
secure 
range?

Current µP inst. pointer

No

Yes

Form corres. 
Frame packet

Unique 
identifier

Update security 
state of system

Send µP I/O 
interrupt

Device request

Is 
Interrupt 

due to 
DMA?

No

Update security 
state

DMA WR 
Access in 

secure data 
range?

Data memory 
WR address

Form Frame packet

Disable corres. 
DMA request Security control (disable)

Disable 
I/O req.

B
oo

t 
P
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se

N
or
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Yes
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The Issue of Untrusted IPs

Basak et al., IEEE TIFS 2017

- Trustworthy Computing in SoC with Untrusted Components 
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IP Vendor

SoC Design 
House

Foundry

Deployment

SoC Life-Cycle HW Security Issues Design /Test Solutions

Trojan-res. design; 
improve. detectability; 

trust validation

Hardware 
Obfuscation; Protect 
IP Eval. Copy, PUF, 

Low-cost 
authentication

SCA resistant 
Design; Prevent 

scan-based attack;
variable ECC

DFT 2012, Tcomp 2012, CHES 2009, D&T, 2012, CHES 2011; ASP-DAC 2013, DAC 2013, VTS 2007, DAC 
2013, ICCAD 2008, DAC 2014, DAC 2015, TCAD 2009, VTS 2014, VTS 2015, PIEEE 2014, TIFS 2017

S
pans all stages in IC

 life cycle

Insert h/w Trojan; 
hidden backdoor

IP piracy (cloning)

Trojan in design 
(e.g. by tools)

Implant Trojan

Overproduction & 
cloning

Leak secret info.

Magnetic field atk.
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Trust Issues in SoC due to  Untrusted IPs

• System level effects of IP level Trojan in SoC – domain of interest!
• Often, visible effects of Trojan only at system level – info. leakage, 

data corruption or DoS of system
• Cannot be detected with standalone IP trust validation

Rogue IP 
Behavior

Passive 
Reader Modifier Diverter Masquerader

System Level 
Impact

Interception Interruption Modification Fabrication
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SoC Security Architecture Resilient to Untrusted IP

• Third-party IPs can have various trust issues.
• How E-IIPS can ensure trust with untrusted IPs?

IP Trust Issues in a SoC Verify Integrity of Wrapper & Fabric

Key Insight: Develop fine-grained, IP-trust aware security policies
Basak et al., IEEE TIFS, 2017
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Resilience to Untrusted IP

Enhanced IP-Trust aware security wrapper  
Micro-architecture of 

Security Monitor
Micro-architecture 
of Interface Trigger

• Security Monitor: Inserted as part of security wrappers to monitor and store recent 
spatio-temporal events – i.e. the “MCE” (Microarchitecturaly Correlated Events)

• Triggered to send MCEs to SPC for correlation analysis; Configured by SPC (boot)
• Inserted by IP provider and/or SoC designer; Can be validated and emulated by local DfD

• Interface Trigger: Detects untrusted IP attempts to communicate with interacting 
IP/SoC components and triggers the monitors 

• IP Trust aware Security Policies in SPC: Decides what and between which MCEs, 
the correlation checks should be performed 

88



All Rights Reserved

Overhead Analysis

DLX µP

M
em

or
y 

co
nt

ro
lle

r

SPI Controller

Diff. Security 
Monitor Scenario

Die Area 
Ovrhead (%)

Power Over-
head (%)

Case I (32 b o/p) 6.68 6.92

Case I (256b o/p) 7.17 7.32

Case II 10.44 10.82

Case III 11.68 11.62

Original Area and Power for DLX µP (at 32 nm) with 
1 KB instr, data memory – 352405 µm2 ; 12.56 mW

Diff. Monitor 
Scenario

Area Ovrhead 
(%)

Power Overhead 
(%)

Case I 10.77 14.04

Case II 11.16 18.53

Diff. Monitor 
Scenario

Die Area 
Ovrhead (%)

Power Overhead 
(%)

Case I 29.88 19.12

Case II 101.08 66.78

Original Area and Power for Memory controller and SPI controller 
IP – 629433 µm2 , 13.81 mW ;    5456 µm2 , 0.298 mW 

Security Monitors 
inserted in 3P IPs  
to analyze H/W 
overheads with  
different scenarios 
of increasing Trojan 
Coverage   

Overhead of Monitors for increasing Trojan coverage in µP

Overhead of Monitors in memory controller and SPI controllerLow Overhead; Minimal increase for higher 
Trojan coverage and output frame width Could be high for small IP cores (like SPI)

IP Core OVH(%) in model OVH(%) in Apple A5 OVH(%) in Intel Atom

Processor 0.31 0.059 0.1

Memory Controller 0.543 0.103 0.175

SPI Controller 0.043 0.008 0.014

Negligible w.r.t. 
full SoC die area
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Patchability Analysis

Prasad et al., ASPDAC 2018
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Hardware Patch

Debnath et al., ASPDAC 2018, Under Review

Software FlowOverall architecture

91



All Rights Reserved

Hardware Patch

Debnath et al., ASPDAC 2018, to appear

What enables 
patching?

• An upgradable security 
policy engine

• Access to (all) security-
critical events

─ Interface w/ on-chip 
debug infrastructure

─ Interface with 
security wrapper

• Remote authentication & 
upgrade install hardware 
(inside RSPE)

92



All Rights Reserved

CAD Framework
• Systematic approach to 

synthesize policies into 
FPGA based RSPE

Key Features: 
• Amenable for 

automatic synthesis of 
arbitrary policies

• 3-tuple format: <timing, 
predicate, action>

Mapping Diverse Security Policies on 
Embedded FPGA-based RSPE
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Representative SoC Security Policies

Policy 
#

Predicate Part Action Part IPs Involved

1 User mode & (Mem RD/WR 
Req. by User — Mem 
RD/WR Req. by IP A — ... )

RD/WR Addr. within specified 
range

DLX µP & any other 
IP with access to 
system memory

2 Supervisor mode & (Mem 
RD Req. by User — Mem 
RD/WR Req. by IP A — ...)

RD Addr. within shared 
memory range & No WR

DLX µP & any other 
IP with access to 
system memory

3 Debug mode & (Trace cells 
busy — power mgmt. 
module busy)

No update in power control 
firmware & no changes in SPI 
controller Config. Reg

Power mgmt. module 
& SPI controller

4 !(Supervisor mode) & (Inst. 
Mem Update Req. through 
test access port or SPI 
controller)

No update of Inst. Mem. 
allowed

DLX µP

5 Active Crypto mode No interrupt or Memory 
Access Req. from the DLX 
core or any IP is allowed

Crypto module, 
processor and other 
IPs access to 
processor
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Results Analysis

Tuple 
Type

Test 
Wrappers

(Number of 
policies)

Security 
Wrappers

(Number of 
policies)

Design-for-debug 
Infrastructure

(Number of 
policies)

2P, 1A 570 490046760 2987015850

4P, 1A 14535 7.91E+13 1.59E+15

8P, 1A 377910 1.75E+23 3.89E+25

8P, 2A 377910 4.42E+25 1.81E+28

• Number of Arbitrary Security Policies
− Observable signals : Predicate tuples
− Controllable signals : Action tuples
− DfD Integration demonstrates superior performance
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Results Analysis

Die 
Area 
(µm2) 

Clock 
Freq.
(MHz)

Cycle 
Count

(10 
Policies)

Total 
Latency

(µs) 

Dynamic 
Power 
(mW)

Static 
Power 
(mW) 

Total 
Energy 

(nJ) 

DLX 
µP

0.724 203 210 1.04 14.27 63.48 80.86

FPGA 1.06 138 26 0.189 64.9 20.43 16.13

Ratio 0.68 1.47 8.07 5.49 0.22 3.11 5.02

Area, Performance, Power, and Energy Values for DLX 
uP Core and FPGA Based RSPE Module

• Energy and Latency:
− FPGA-based design vs MCU-based Design
− FPGA-based design:

• 5.02 times more energy efficient
• 5.5 times faster
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Summary
• Developed and evaluated a novel infrastructure IP for 

security!
• Protects against both HW and SW Security Issues
• Developed a novel architecture for efficient

implementation of SoC security policies
– Flexible (& upgradable in field)
– Enables systematic implementation
– Lower overhead 
– Easy-to-debug
– Minimal impact on the IP blocks (standardized security 

wrapper)
[Recent] Developed formal verification flows for policies
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Ø Designing and validating security of complex modern 
embedded systems is a critical problem

Ø Addressing the problem requires strong collaboration 
among several areas in Computer Science and 
Engineering

Ø We have made some progress, but our research has 
only scratched the surface of this vast domain

Ø The future road in this area is uncertain, exciting, and 
crucial to our well-being

Conclusion
“It’s good to do something that scares you”
- --- Ellen DeGeneres
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#PowerfulYetSecure

THANKS! 

Questions ? 
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