
All Rights Reserved

System-on-Chip Platform Security
Architecture, Design, Deployment, Debug

Sandip Ray and Swarup Bhunia
Department of Electrical and Computer Engineering

University of Florida
{sandip, swarup}@ece.ufl.edu

http://{sandip, swarup}.ece.ufl.edu

mailto:sandip@ece.ufl.edu
http://sandip.ece.ufl.edu/
http://sandip.ece.ufl.edu/
http://sandip.ece.ufl.edu/

All Rights Reserved

Acknowledgements
• Sean Baartmans
• Debra Bernstein
• Jay Bhadra
• Jeremy Casas
• Wen Chen
• Kai Cong
• Victor DelaGarza
• Monica Farkash
• Jason Fung
• Iwan Grau
• Raghudeep Kannavara
• Sava Krstic
• Li Lei
• Rebekah Leslie-Hurd
• Dhinesh Manoharan
• David Ott
• Jim Schwartz
• Mark Tuttle
• Jin Yang

• Abhishek Basak
• Srivalli Boddupalli
• Bo Chen
• Atul Prasad Deb Nath
• Domenic Forte
• Christopher Havlicek
• Sharad Malik
• Prabhat Mishra
• Mark Tehranipoor
• Fei Xie
• Hao Zheng

2

All Rights Reserved

Platform Security Assurance

Review the overall platform
for attack opportunities
which undermine security objectives
in ways not covered by traditional approaches

3

All Rights Reserved

Tutorial Goals

§ Explain the scope of SoC platform security

§ De-mystify and comprehend many of the
security activities performed in practice today

§ Discuss limitations in current state of practice

§ Present some emergent solutions

A significant emphasis is on current industrial
practice (and its limitations)

4

All Rights Reserved

Traditional Computer
Security
vs.
Modern SoC Security

5

All Rights Reserved

How can we minimize vulnerability
of our computing systems to
malicious attacks?

6

All Rights Reserved

“An embedded system is a combination of hardware and
software, and perhaps additional electrical or mechanical parts,
intended to provide a dedicated function”

― Michael Barr, Programming Embedded Systems, 1999

Changing Computing Landscape…

General-purpose systems
§ Complex, optimized architecture
§ Versatility and programmability
§ Diverse use-case scenarios§ Customized design

§ Unique use-case constraints
§ Tight HW/SW integration

Embedded systems

“An embedded system is an electronic system that uses a
computer chip but is not a desktop, laptop, or server”

― PC Magazine, 2012

§ Customized design
§ Unique use-case constraints
§ Tight HW/SW integration
§ Complex, optimized architecture
§ Versatility and programmability
§ Diverse use-case scenarios

How can we minimize vulnerability of our highly
complex modern computing systems to malicious
attacks?

7

Services

Things

Cloud
Applications

Network

….In a Highly Connected World….

“City of Hamburg and CISCO launch plan
for smart city of the future”
BBC World News, May 1 2014

How can we minimize vulnerability to malicious
attacks of diverse, highly complex computing
systems in hands of possibly naïve users, operating
in an environment of billions of complex, error-
prone, possibly malicious communicating devices?

8

All Rights Reserved

…Created By Complex Supply Chain…

IPs

Fabrication

Assembly and Test

Source: FICS

How can we develop trustworthy, dependable,
usable computing infrastructures with billions
of smart, highly complex, connected computing
devices, operating in a potentially malicious
environment, and developed by a complex
supply-chain of untrustworthy players?

9

All Rights Reserved

…Built Under Aggressive Schedule…

Product Timeline

Planning ProductionDevelopmentExploration

3-4 years< 1 year

How can we develop trustworthy, dependable, usable
computing infrastructures with billions of smart,
highly complex, connected computing devices,
operating in a potentially malicious environment, and
developed by a complex supply-chain of
untrustworthy players within a strict time-to-market
requirement?

All Rights Reserved

Different Faces of Security

Device Security
• NFC and RFID
• Hardware primitives such

as PUFs

Platform Security
• HW/FW/SW Interactions
• System-level Policies
• Design and development

of security architectures

Cloud Security

• Mobile cloud
• Cloud clients and

infrastructures

11

All Rights Reserved

Scope of Platform
Security

(10 mins)

12

All Rights Reserved

Platform Security Assurance

Review the overall platform
for attack opportunities
which undermine security objectives
in ways not covered by traditional approaches

• All software, firmware, and hardware
• Including third party
• Potentially including services
• Don’t forget the board

• All reasonable attacker starting points
• Software, physical access

• All reasonable attacker motivations
• Data theft, jailbreaking, DRM bypass, remote

access, DoS, …. 13

All Rights Reserved

Platform Security Assurance

Review the overall platform
for attack opportunities
which undermine security objectives
in ways not covered by traditional approaches

• Feature security objectives
• Architectural security objectives
• OS and App security objectives
• User’s security expectation

• Minimize duplication of efforts
• Find gaps in current approaches

• Third party interactions
• ….

14

All Rights Reserved

CanSecWest 2015

Attack on Intel BIOS for X86-Based Computers
- Exploits X86 architectural vulnerability
- 3161 Shipped BIOS images, 3 vulnerabilities, only 12 misses!

15

All Rights Reserved

CanSecWest 2015

Attack on Intel BIOS for X86-Based Computers
- Exploits X86 architectural vulnerability
- 3161 Shipped BIOS images, 3 vulnerabilities, only 12 misses!

But BIOS can be patched, so I needn’t worry, right!
- In reality, most people do not patch BIOS
- Since BIOS code is reused, infection is reusable and automatable

This all carries over to our smartphones and hand-
held devices, while introducing more vulnerabilities

16

Mobile Devices: Attack Surface
Attacks on Privacy via
malicious apps and in-

app Ad libraries

SMS

Calender

Pictures

Location

Contacts

E-Mails

Music Browser Attacks

Malware (e.g., Games)

Premium-Rate
Services

Hardware Attacks

Exploit Mobile
Cloud Apps

Mobile Network
Attacks

SIM and SD Card,
NFC

Baseband
and 3G

Sensor Malware

17

All Rights Reserved

Planning ProductionDevelopmentExploration

SoC Design Flow

Tape-
out

1st

Silicon PRQ

Pre-silicon Post
silicon

Survivability

SW/FW

HW

Security
Assessment

Security
Validation

Security
Architecture

Threat modeling
Architecture review
Design review
Security Test plans
Architectural FV

Security
Validation

Code review
RTL Testing
RTL FV

Security
Validation

Penetration
Testing

Risk Review
Architecture Definition

18

All Rights Reserved

Assets, Policies, and
Enforcement

19

All Rights Reserved

The “CIA” Pillars

Confidentiality

Availability

Integrity

− Read access control of sensitive data
− Authorization and authentication are essential

− Write access control of sensitive data
− Authorization and authentication are essential

− Fault tolerance, Robustness, Handle bad inputs, DoS
− Fail safe, handle exceptions safely and securely

20

All Rights Reserved

What’s in Security Policy?

− Keys (Developer/OEM)

− Premium content

− End user information

− (Firmware) Execution

flows

− Debug modes

− ….

− ….

− Confidentiality

− Integrity

− Anti-replay

− Privacy Aspects

− ….

− ….

Policy

Assets

Protection Requirement

• Multiple owners over lifetime of the parts
• Multiple IPs that do not trust each other

21

All Rights Reserved

Access to Assets

Manufacturer Service
ProviderOEM

Security
Engine

Graphics
Engine

Secure
Element

Fuse
Controller

Memory
Controller

DRAMKeys

SoC

ContentKey
Storage E-wallet

Control
Reg Sensor

Data

Stakeholders

Stakeholders provision Assets
such as Keys, E-wallet which
reside in SoC building blocks
such as Fuses, Secure
Element etc.

For every access to
assets and building blocks
holding and managing them,
determine:
Who is accessing the asset?
What actions are requested?
When access is requested?

As Assets flow through the
various SoC building blocks
during boot, additional assets
are created at runtime

22

All Rights Reserved

Example: Master Key

Who When How Condition

Firmware Boot Read Internal
boot

Who When How Condition

Any After
Boot

No
read

Any

Boot Runtime Execution
phase

Who When How Condition
OEM Prod Write Authen-

ticated

Who When How Condition

Customer Deploy No
write

Any

Production Deployment Product
Life-cycle

Master key is the root of all key blobs used by the cryptographic
engines in the chip. Other keys are derived from it.

23

All Rights Reserved

More Complexity: Fabrics

High-speed, coherent
Fabric

CPU

DRAM

IP IP

Low-speed
Fabric

IP

GFX

Communication
Fabric

Router Router

− Message immutability
− Redirection prevention
− Masquerade prevention
− Non-observability

• BARs used to get to the destination
• Transactions over some fabric subject

to redirection by host OS
• Cannot trust OS controlled BARs
• Alternate routing mechanism

necessary for secure communication

24

All Rights Reserved

Industrial Primitives
• ARM Trustzone

- Partition HW and SW resources into secure and insecure worlds
- HW supports access control, permissions, and communications
- SW supports secure system-call / interrupts for run-time execution

• Intel SGX
- TEE to protect applications against malicious OS
- Applications can create secure enclaves as “islands of trust”
- Implemented as a collection of new CPU instructions

• Samsung KNOX
- Partition between business and personal content
- Hot swap between the two worlds

25

All Rights Reserved

Enforcement Requirements
• Standardized language for security policies

• Tools to synthesize policy implementations
• Parameterized, instantiable policy architecture

• Effective validation strategies

­ Some progress made on each vector by
academic/industrial research

­ But a large gap remains between the state of
the art and what we need to be effective

26

All Rights Reserved

SoC Security
Validation

27

All Rights Reserved

Planning ProductionDevelopmentExploration

SoC Design Flow

Tape-
out

1st

Silicon PRQ

Pre-silicon Post
silicon

Survivability

SW/FW

HW

Security
Assessment

Security
Validation

Security
Architecture

Threat modeling
Architecture review
Design review
Security Test plans
Architectural FV

Security
Validation

Code review
RTL Testing
RTL FV

Security
Validation

Penetration
Testing

Risk Review
Architecture Definition

28

All Rights Reserved

Science and Art of Security Validation

ArtScience

Functional
validation of

features providing
security assurance

White Box Expert
HackingNegative Testing

Validation of
Deterministic

Security
Requirements

Well-defined / Low Complexity Exploratory / High Complexity

Example: Crypto
engine encrypts and
decrypts data
correctly on all modes

Crypto, secure boot,
patching, etc.

Access control restrictions,
address translation, etc.
Bugs are likely overlooked
during normal usage

Example: Calls to DMA
access to DMA-protected
memory range through
DMA address translation
regs. must be aborted

Look beyond what is
specified, see if
security objectives can
be subverted or are
underspecified

Example: Are there
other paths to protected
DMA memory in addition
to DMA address
translation regs? How to
activate them?

Goal-oriented
attempts by expert
hackers at breaking
security objectives
(often at HW/FW/SW
divide or chip
boundary)

29

All Rights Reserved

Three Easy Steps to
Validation

− Identify the security objectives
−Model the security threats
−Validate objectives against threats

30

All Rights Reserved

Adversaries in SoC Security
Asset owners
− Manufacturer, OEM, End user

−Adversary Capabilities
− Unprivileged software adversary
− System software adversary
− Software side-channel/covert-channel adversary
− Simple hardware adversary
− Skilled hardware adversary
− Hardware reverse-engineer adversary

Adversaries
− Manufacturer, OEM, End user

31

All Rights Reserved

Modeling Threats

Define/ Review Security
Objectives

Identify/ Review System
Assets

Define Protections and
Mitigations

Update Specs and Iterate

Define/ Review trust Levels &
Entry points

Enumerate and Rank threats
Product Specs

Section 1

Section N

.

.

.

Security Section(s)
Security

Objective 1

Security
Objective 2

Threats
Attack Points
Test Strategy

Etc

Mitigation
Strategy and
requirements

Etc

Product Specs

Prior Issues

Usage Models

32

All Rights Reserved

Example: Code Injection Threats

Boot Code
ROM

Embedded
Core

Cache
SRAM

DRAM

Secondary Storage
(HDD, Flash, etc)

SR-1: Protect memory range from
access by untrusted DMA engines.

SR-2: Prevent direct access to internal
memory from untrusted code.

SR-3:Write-protect non-
volatile memory region.

Security Objective:
Prevent Code Injection in storage and
runtime memory

Assets:
Cache SRAM, DRAM, Secondary
storage

Threats:
• Untrusted device access to DRAM

through DMA
• Write to internal cache SRAM
• Corrupt secondary storage

33

All Rights Reserved

Threat Analysis: Complexity
− Model perspective

− Entry point identification

− Risk Assessment

− Attacker-centric, starts with attacker motivation and ability
− Asset-centric, starts with assets
− System-centric, starts with system execution flow

How many entry points are there:
− Debug feature? Crypto keys? Display ports?

− Damage Potential
− Reproducibility
− Exploitabiliy
− Affected Systems
− Discoverability

34

All Rights Reserved

Validation Activities Summary

• Fuzzing
− Determine behavior on unexpected inputs

• Penetration Testing
− Focused tests to exploit vulnerabilities

• Formal Verification
− Using static/formal techniques

• Hack-a-thon
− Concerted hacking by a group of experts

35

All Rights Reserved

Fuzzing

A method for discovering faults in design by
providing unexpected inputs and monitoring for
exceptions

Fuzzer
Vectors

• Long strings
• Symbols
• Bit flipping
• Large integers

Interface Observed
behavior

• System hang
• Crash
• …

• Buffer overflows
• Integer overflows
• Access violations
• Unhandled exceptions

• DoS
• Race/Timing errors
• Memory leaks
• …

36

All Rights Reserved

Fuzzing Approaches
Dumb/Mutated

Smart/Generated

• Random inputs or randomly mutated valid input, throw
any and all at it

• Easy and fast to apply

• Generated anomalies based on comprehensive
knowledge of target

• Significant up front investment
• Greater coverage

37

All Rights Reserved

Penetration Testing

A penetration test is an attack on a computer system with the
intention to find security weakness, potentially gaining access
to it, its functionality, and data

• Enumerate the attack surface
• Exploit/perform the attack
• Analyze results against objectives

38

All Rights Reserved

Penetration Testing:
Vulnerability Detection

“Easy”:
− Documentation Review
− Known vulnerability
− Missing patches
− Out-of-date software
− Known Misconfigurations
Moderate
− Related Misconfigurations
− Related Vulnerabilities
− Tool Smorgasbord
Hard
− Component Analysis
− Vulnerability Classes
− Platform Horizontal/Integration Testing
− Vulnerability Research 39

All Rights Reserved

Formal Verification

Heavy-weight
Full verification of critical modules, e.g., cryptographic core

Light-weight
Using static analysis methods to exercise different system paths and
expose vulnerabilities

Use of mathematical and symbolic methods to
formally prove a desired property of the system

40

All Rights Reserved

Formal Verification: Case Study

Is the firmware that is
finally loaded always
the authenticated
firmware?

No

• A counterexample requires 3 concurrently running flows
with the right interleaving

• Difficult to achieve through penetration testing or fuzzing

Krstic et al., 2015

41

All Rights Reserved

Security and
Debug Challenges

42

All Rights Reserved

Issue at Hand

-Security is critical for modern computing systems

-But also critical is our ability to validate
and debug these systems

Security and validation/debug requirements
are, for the most part, not in conflict

Big Exception: Post-silicon Validation

43

All Rights Reserved

Basis of the Conflict

-Security requires protection of assets and secrets
from indiscriminate/unauthorized access

-Post-silicon validation and debug require
observability and controllability of internal signals
of the design

• Can we satisfy both these requirements?
• If there is a trade-off, how can we resolve it?
• How serious is the problem?
• What do we do today? Why is it inadequate?
• What factors should a solution consider?

44

All Rights Reserved

Planning ProductionDevelopmentExploration

What’s in Validation?

Tape-
out

1st

Silicon PRQ

Pre-silicon Post
silicon

Survivability

SW/FW

HW

Code Reviews
Simulation and Testing
Hardware Acceleration / FPGA
Formal Analysis

+ High observability
+ High control
- Inaccurate physical models
- Poor tool scalability

45

All Rights Reserved

Planning ProductionDevelopmentExploration

What’s in Validation?

Tape-
out

1st

Silicon PRQ

Pre-silicon Post
silicon

Survivability

SW/FW

HW

Focused Logic Tests
Large Software Applications
Electrical Parameters
Physical Stress Conditions

+ High execution speed
+ Exploration of deep states
+ Accurate physical behavior
- Limited observability and control
- Error sequentiality
- Noise

46

All Rights Reserved

Planning ProductionDevelopmentExploration

What’s in Validation?

Tape-
out

1st

Silicon PRQ

Pre-silicon Post
silicon

Survivability

SW/FW

HW

Firmware/software patches
Reduce features

- Very limited observability/control
- Limited defeature bits
- Time

47

All Rights Reserved

• With real silicon
• Typically running actual software and application

What is Post-silicon Validation?

Ensure that (pre-production) chip behaves as expected

• Compatibility Validation (CV)

• System Validation (SV)

• Marginality/Speed-path Validation (MV)

• Electrical Validation (EV)

Logic correctness (using specialized synthetic tests)

Compatibility with apps, OS, add-ons, etc.

Validation of electrical properties, noise margin

Identification of frequency-limiting paths

• Performed under aggressive schedule
• Requires expensive, elaborate setup
• Requires significant up-front planning

48

All Rights Reserved

Post-silicon Validation Flow

Planning ProductionDevelopmentExploration

Tape-
out

1st

Silicon PRQ

Pre-silicon Post
silicon

Planning SteppingsDevelopment

Test plans
On-chip Instrumentations

Findings

Retest

Coverage metrics
Debug SW
Tests
Test boards / cards 49

All Rights Reserved

§ To validate/debug a design we need to observe updates to
different signal values during execution

§ To observe a signal, we must instrument the design to funnel its
value to an observation point

On-Chip Instrumentation

• We can only select a very small number of signals

Millions of multi
gigahertz internal
wires 120K block-to-
block wires

Approx. 100
external wires

• Observable signals must be determined pre-silicon

• Observability problems are experienced post-silicon

• Fixing inadequate observability requires a new silicon
stepping (and is often impossible)

50

All Rights Reserved

§ Used for critical properties
§ Currently purely manual, based on designer intuition

On-Chip Instrumentation Practice

Custom Instrumentation

― State observability, e.g., scan, memory dump
― Trace observability, e.g., for events, messages
― Access infrastructure, e.g., JTAG, microcode patch
― Trigger, e.g., hardware assertions
― Programmable microcontrollers
― Misc., e.g., defeatures, coverage monitors, counters

Generic Instrumentation Architectures
§ Too many to enumerate or even comprehend fully

51

All Rights Reserved

Some Consequences
XBOX 360 JTAG Hack

• Use JTAG port to write to firmware memory
• Update firmware

– New FW permits unauthorized code execution
• A common approach to attack SoC
- Similar approaches to jailbreak smartphones

Solution is NOT to disable update via JTAG
52

All Rights Reserved

Why is it not just a security Policy?

Firmware upgrade policy: Restrict type of
firmware upgrade permissible through JTAG

Not much different from any other security
policy!!

• Ambiguity
• Observability requirements are rarely clear-cut

• Feed-through
• Routing signals through high-security modules

• Lack of centralization
53

All Rights Reserved

State of the Practice

• Start with high instrumentation and little security
during design and early validation phase

Primarily based on human creativity, although
there is some method to the madness

• Progressively disable debug features and tighten
security requirements as we advance in design life-cycle

• Permit on-field debug temporarily under special
circumstances

• Highly complex design requirement
• Does not account for
- 3rd party IPs with assets protected from
validators
- Rogue IPs
- …

54

All Rights Reserved

Considerations for Solution
• HVM Challenges

− Reuse same test patterns, provide simple access, high coverage

• Validation Challenges
− Support efficient functional debug while protecting secrets

• Reusability Considerations
− Across different types of assets and usage models

• Control logic Issues
− Centralized, easy to follow, validate, check for leaks, etc.

• Observability Considerations
− Self-securing, reduce/eliminate temporal attacks

• Variability Challenges
− Robust against late changes

55

All Rights Reserved

Security in IoT

56

All Rights Reserved

The Internet of Things Regime
The IoT Regime is the point of time when
the number of connected computing
devices exceeds the human population.

IoT involves a connected network of
physical objects or “things” embedded
with electronics, software, and sensors,
to enable it to behave smartly and
achieve greater value.

--- Cisco White Paper, 2011

--- Wikipedia

Source: Intel

Source: Cisco

Computers smaller than a grain of sand
can be spread anywhere to measure
chemicals in soil or problems in human
body

Smart Dust

Fixed and mobile
sensors dispersed
throughout the city
of Dublin are
already creating a
picture of what’s
happening and will
help the city in the
time of crisis.

Smart City

57

All Rights Reserved

E2E View of IoT

Sensors
Active/Passive Tags

HVAC, Fitbit

Factory, Building,
Car

ISP Routers,
Firewalls

Enterprise Cloud,
DC

Components of Things

Things

IoT Gateways

Network
infrastructure

IoT Cloud
Datacenters

Too many configurations of sensors, devices, and gateways connected
and delivering data

58

All Rights Reserved

An All-Encompassing
Ecosystem

Nothing in
computing (or
anywhere else)
left behind

59

59

All Rights Reserved

Type of
Developer

Considerations

Hobbyists;
Students;
Makers

• Low Cost solutions; open development environment
• Dev Support

Entrepreneurs;
Start-ups

• Accelerated TTM
• Build Cost
• Support/ Maintainability
• Productization support

Traditional OEMs • Interoperability/Connectivity with existing solutions.

Existing
Producers

• Interoperability/Connectivity with existing solutions

• Ability to connect with devices outside closed ecosystem

A Disparate Stakeholder Pool

60

All Rights Reserved

The Security Story

Cloud increases data exposure to security threats

Internet of Things magnifies the amount of data
and diversity of data collection sites

Walden C. Rhines,
Mentor Graphics,
2016

61

All Rights Reserved

Long, complex life cycle

Mass produced in same configuration

Machine-to-machine

Normal C-I-A often reversed

Some Unique Features of IoT

Equipment never intended to be connected

Many traditional protection mechanisms not applicable due to
form factor, deployment, power constraints

Requires holistic view of device to gateway to cloud
and the communications between them

62

All Rights Reserved

Challenge from Long Life: Post-
Quantum Crypto

Problem:
- Quantum computers may come into existence between 2030 and 2050
- They will
- break RSA and ECC
- find n-bit AES keys and pre-image of n-bit hash in time 2n/2

-Designs that depend on crypto are at risk

IoT systems that are expected to survive till 2030 and
beyond should account for this risk

63

All Rights Reserved

Why is this hard?

Algorithm Attack Ops on Classical
Computer

Ops on Quantum
Computer

AES – 256 bit
key

Cryptanalysis 2256 2128

SHA2 or SHA3
– 384 bit hash

Find Pre-image 2384 2192

Find Collision 2192 2128 with 2128

RAM

There are of course known ways to address the crypto
issue

• Replace all use of symmetric crypto with AES-256
• Replace all use of cryptographic hash with SHA2 or SHA

For all uses of crypto that cannot be modified
on field, are these assumptions sufficient?
How do we validate such a requirement?

64

All Rights Reserved

Configurability Needs
• Long device life

• Large OEM ecosystem

• Product/platform diversity

– Policy and implementation upgrades, on-field adaptation

– Flexibility for implementing (and upgrading) policies

– Quick policy configurability for different platforms and form factors
and derivatives

• Dynamically changing user security needs

• How do we capture such requirements?
• How do we add resilience implementing such requirements?
• How can we validate them, with aggressive TTM schedule?

65

All Rights Reserved

Infrastructure IP for
Security: A Scalable Solution

for Secure SoC

66

All Rights Reserved

Background: Infrastructure IP
• System-on-chip (SoC) design using reusable IP

blocks is a prevalent practice!

• Most IPs are functional

– CPU, memory, DSP, crypto, comm., analog, ……

Infrastructure IP – A special class of non-functional IPs incorporated
during SoC integration to facilitate test/debug/verification!

Infrastructure IP for Security (IIPS)* – A non-functional IP that interfaces
with existing IPs in an SoC to implement hardware security features!

* Wang, Basak, & Bhunia, IEEE Tcomp, 2015
67

All Rights Reserved

Infrastructure IP for SoC Security (IIPS)
• IIPS contains multiple security primitives to provide various

security protections for an SoC
• Features of IIPS

1. Ease of integration; plug-n-play using IEEE 1500 Standard
2. Centralized
3. Minimal performance/power/area overhead
4. Functionally scalable and flexible
5. Configurable
6. Does not affect IP level design & IP integration in SoC
7. Can be merged with other (e.g. test) infrastructure IPs

68

All Rights Reserved

IIPS: Summary
Flexibility:
• Flexible in interfacing with enhanced configurations of IEEE 1500 arch.
• Effectiveness can be improved with advanced features of IEEE 1500

– ScanPUF & Trojan detection can be adapted to use the parallel interface
– Broadside capture can be applied for detecting Trojans in system buses

Functional Scalability:
• Can provide protection against other attacks / other protection schemes
• Can be configured at both design & run time
• Can be integrated with test support logic to reduce overhead & effort

Configurability / Sunthesizability:
1. Configurable IIPS IP block
2. Amenable for automatic synthesis of IIPS in a SoC design

69

All Rights Reserved

Using IIPS for Security Policy
Enforcement

Basak et al., DAC 2015
Basak et al. ICCAD 2015

Basak et al., IEEE TIFS 2017
Ray et al., IEEE Spectrum 2018

Ray at al., PIEEE, 2018

70

All Rights Reserved

• Security assets in SoC spread across different IP blocks
• Assets: Crypto cores, programmable fuses, DRM keys,

firmware, user data etc.

• Access restrictions governed by SoC security policies

• Policies often involve subtle interactions between IPs

• Natural language representation in architecture documents
– Often ambiguous & complex

– Often continuously refined during SoC integration

– No systematic method

E-IIPS: Extended IIPS

E-IIPS enables systematic & flexible implementation of
diverse SoC security policies!

71

All Rights Reserved

A systematic way to address diverse SoC security Issues

• Wang et al., IEEE Tcomp, 2015
• Ray et. al., DAC 2015
• Basak et al., ICCAD 2015
• Basak et al., TIFS 2017

Proc. Mem

Crypto Comm.

So
C Trust/Security Issues:

• Authentication
• Hardware Trojan
• Scan based attacks
• Side-channel attacks
• Diverse security policies

Infrastructure
IP for Security

Centralized, plug-n-play,
configurable security-brain

Security Wrapper

• Reduced design effort/cost!
• Improved security
• Improved debug
• Protection against unanticipated

attacks (a “hardware patch”)

72

All Rights Reserved

Security Policies
• Security assets in SoC spread across different IP blocks
• Assets: Crypto cores, programmable fuses, DRM keys, firmware, user

data etc.
• Access restrictions governed by SoC security policies
• Policies governing confidentiality, integrity & availability of assets
• Policy Categories: (1) Access Control; (2) Information Flow; (3) Liveness;

and (4) Time-of-Check Time-of-Use (ToC-ToU)

Ex. 1 – During boot, data transmitted by crypto-engine cannot be observed
by any IP in the SoC other than its intended target (Confidentiality)

Ex. 2 – A secure key container can be updated during silicon validation,
but not after production (Integrity)

73

All Rights Reserved

Proposed Architecture
“E-IIPS” (Extended IIPS)

• Implements SoC security policies

• µC based design

• Policies programmed as F/W in

secure NVM – easy to patch/

upgrade!

– Authentication during
upgrade

“Security Wrapper” around IPs
• Extension of std. test/debug

wrappers

• “Smart” – only security relevant

events communicated to E-IIPS

– Reduces comm. bottlenecks
74

All Rights Reserved

Security Wrappers • Wrappers abstract out

internal IP details!

• Std. variable length

frame based comm. w/

E-IIPS

• Request & Control
signals from E-IIPS

• E-IIPS configures

wrappers at boot time

• Events standardize

within IP types e.g.

memory, processor,

comm. core

• Memory IP:

memory/cache

controllers etc.

– Events: IP read/write

requests, power down

– Metadata: address, DMA

channel, burst size

75

All Rights Reserved

E-IIPS – Security Policy Controller

E-IIPS Functions
• Analyze events

from IP wrappers
• Determine system

security state
• Communicate IP

specific request &
disable

Major Components
• Security Buffer – Storage for IP event logs
• Policy Enforcer – Execution engine (µC)

– Configurability at design time
76

All Rights Reserved

An Example Mapping
Policy: DMA accesses prohibited for system specific addresses

Extended IIPS DMA engines + Wrapper Memory Controller + Wrapper

Configure secure system

address range and

DMA I/O channels
Configure platform I/O

channel no/addresses

Store address range in wrapper

configuration register

RequestDMA
interface

Address sent through Requestmem_control
interface

DMA access flag set (request)

Address

Data

No

G
ra

n
t

a
c

c
e

ss
 t

o

m
e

m
o

ry
 b

u
s

Yes

Block DMA request

Event frame

Increment
violationcount

No

Keep DisableDMA
as it is

Yes Assert DisableDMA to block DMA for
that channel and notify processor

B
o

o
t

ti
m

e

c
o

n
fi

g
u

ra
ti

o
n

N
o

rm
a

l

E
x
e

c
u

ti
o

n

D
M

A
 v

io
la

ti
o

n

d
e

te
c
t

a
n

d

a
c
c
e

s
s
 b

lo
c
k
e

d

V
e

ri
fy

 D
M

A

v
io

la
ti

o
n

c
o

u
n

ts

Ti
m

e

Addr. in sys.

range?

Count = Max ?

77

All Rights Reserved

Overhead Analysis
Functional SoC Model
• IP cores (Verilog RTL)

from open source

• DLX RISC µP (5 stage),

128 pt. FFT engine, 128-

bit AES core, SPI

controller core

• IEEE 1500 boundary

scan incorporated

• IPs have addresses

mapped to memory

• Point-to-point

connections

• Functionally validated
with Modelsim

78

All Rights Reserved

Results
E-IIPS

• Policy Enforcer: DLX RISC

µP core

• Security Buffer: 4 KB, 32b

frames

• Instruction Memory: 4 KB

• Data Memory: 1 KB

• 2 bit req. & disable sig.

• Memory areas from CACTI

SRAM models

Security Wrapper
• Example Events: Memory

RD/WR (memory controller),

transfer start/stop (SPI) etc.

SoC Org. Area
(µm2)

E-IIPS
Overhead (%)

Model 13.1x106 21.7

Apple A5
(APL2498)

69.6x106 4.06

Intel Atom
Z2520

41x106 7.1

IP Org. Area
(µm2)

Wrapper
Overhead (%)

AES engine 101620 2.1
SPI controller 3947 9.2
DLX RISC µP 290496 6.8
FFT engine 1810 10.1

E-IIPS Overhead

Wrapper Area Overhead

79

All Rights Reserved

Can on-Chip Debug Architecture
Help?

Basak et al., DAC 2016

80

All Rights Reserved

Details on Security-Debug Integration

Minimal (typical) H/W overhead
in security wrapper to local
trace cell interface

Representative Central Policy Controller to
DfD Interface

Experimental framework for H/W
Overhead/Power Analysis

• Certain use case scenarios of security
policy implementation using DfD
instrumentation have been analyzed

• At boot, E-IIPS configures these DfD cells
• Debug functionality / usages not hampered

81

All Rights Reserved

Debug Interface with Security Architecture

A. Basak et. al, DAC’16

Methodology DfD Re-purposing Constraints
• Required local DfD configuration register address

/values extracted from debug program model

• SoC designer stores them in E-IIPS

• At boot, E-IIPS configures these DfD cells

• During normal execution, the local DfD detects
events of interest and sends them to E-IIPS

• Debug functionality / usages not
hampered

• System energy / power profiles not
significantly affected

• Small H/W overhead for DfD-security
interfacing

• Separate triggered DfD port to wrapper (event transport)

• Configuration register based unique event identifier

Wrapper-local DfD
• Addition in Debug Access Port (DAP)

• Configuration link from SPC to DAP

SPC-DfD interface

W
ra

pp
er

 to
 lo

ca
l D

fD
 C

om
m

. I
nt

er
fa

ce

82

All Rights Reserved

An illustrative Use Case Scenario

µP Embedded Trace
Macrocell (ETM)

Ti
m

e

Security Policy
Controller

I/O Non-Interference Policy: When CPU is executing in high security mode, I/O devices
on SoC platform cannot access protected data memory

Debug Access
Port (DAP)

µP security
wrapper

DMA engine

Configure secure
mem. range and
ETM events like
“prog. counter in
secure range” &
“DMA access to

secure data page”

Grant SPC AP
access to DfD

config. bus
Program config.

register for
security events

Configure
wrapper events

if applicable

DMA
channel,
memory
address

configure

Address/data

Address/data/controls

debug config. bus

Boot F/W

Address in
secure
range?

Current µP inst. pointer

No

Yes

Form corres.
Frame packet

Unique
identifier

Update security
state of system

Send µP I/O
interrupt

Device request

Is
Interrupt

due to
DMA?

No

Update security
state

DMA WR
Access in

secure data
range?

Data memory
WR address

Form Frame packet

Disable corres.
DMA request Security control (disable)

Disable
I/O req.

B
oo

t
P

ha
se

N
or

m
al

ex

ec
ut

io
n

S
ec

ur
e

pr
og

.r
un

In
pu

t W
R

in

te
rr

up
t

D
is

ab
le

by

 p
ol

ic
y

Yes

Yes

83

All Rights Reserved

The Issue of Untrusted IPs

Basak et al., IEEE TIFS 2017

- Trustworthy Computing in SoC with Untrusted Components

84

All Rights Reserved

IP Vendor

SoC Design
House

Foundry

Deployment

SoC Life-Cycle HW Security Issues Design /Test Solutions

Trojan-res. design;
improve. detectability;

trust validation

Hardware
Obfuscation; Protect
IP Eval. Copy, PUF,

Low-cost
authentication

SCA resistant
Design; Prevent

scan-based attack;
variable ECC

DFT 2012, Tcomp 2012, CHES 2009, D&T, 2012, CHES 2011; ASP-DAC 2013, DAC 2013, VTS 2007, DAC
2013, ICCAD 2008, DAC 2014, DAC 2015, TCAD 2009, VTS 2014, VTS 2015, PIEEE 2014, TIFS 2017

S
pans all stages in IC

 life cycle

Insert h/w Trojan;
hidden backdoor

IP piracy (cloning)

Trojan in design
(e.g. by tools)

Implant Trojan

Overproduction &
cloning

Leak secret info.

Magnetic field atk.

85

All Rights Reserved

Trust Issues in SoC due to Untrusted IPs

• System level effects of IP level Trojan in SoC – domain of interest!
• Often, visible effects of Trojan only at system level – info. leakage,

data corruption or DoS of system
• Cannot be detected with standalone IP trust validation

Rogue IP
Behavior

Passive
Reader Modifier Diverter Masquerader

System Level
Impact

Interception Interruption Modification Fabrication

86

All Rights Reserved

SoC Security Architecture Resilient to Untrusted IP

• Third-party IPs can have various trust issues.
• How E-IIPS can ensure trust with untrusted IPs?

IP Trust Issues in a SoC Verify Integrity of Wrapper & Fabric

Key Insight: Develop fine-grained, IP-trust aware security policies
Basak et al., IEEE TIFS, 2017

87

All Rights Reserved

Resilience to Untrusted IP

Enhanced IP-Trust aware security wrapper
Micro-architecture of

Security Monitor
Micro-architecture
of Interface Trigger

• Security Monitor: Inserted as part of security wrappers to monitor and store recent
spatio-temporal events – i.e. the “MCE” (Microarchitecturaly Correlated Events)

• Triggered to send MCEs to SPC for correlation analysis; Configured by SPC (boot)
• Inserted by IP provider and/or SoC designer; Can be validated and emulated by local DfD

• Interface Trigger: Detects untrusted IP attempts to communicate with interacting
IP/SoC components and triggers the monitors

• IP Trust aware Security Policies in SPC: Decides what and between which MCEs,
the correlation checks should be performed

88

All Rights Reserved

Overhead Analysis

DLX µP

M
em

or
y

co
nt

ro
lle

r

SPI Controller

Diff. Security
Monitor Scenario

Die Area
Ovrhead (%)

Power Over-
head (%)

Case I (32 b o/p) 6.68 6.92

Case I (256b o/p) 7.17 7.32

Case II 10.44 10.82

Case III 11.68 11.62

Original Area and Power for DLX µP (at 32 nm) with
1 KB instr, data memory – 352405 µm2 ; 12.56 mW

Diff. Monitor
Scenario

Area Ovrhead
(%)

Power Overhead
(%)

Case I 10.77 14.04

Case II 11.16 18.53

Diff. Monitor
Scenario

Die Area
Ovrhead (%)

Power Overhead
(%)

Case I 29.88 19.12

Case II 101.08 66.78

Original Area and Power for Memory controller and SPI controller
IP – 629433 µm2 , 13.81 mW ; 5456 µm2 , 0.298 mW

Security Monitors
inserted in 3P IPs
to analyze H/W
overheads with
different scenarios
of increasing Trojan
Coverage

Overhead of Monitors for increasing Trojan coverage in µP

Overhead of Monitors in memory controller and SPI controllerLow Overhead; Minimal increase for higher
Trojan coverage and output frame width Could be high for small IP cores (like SPI)

IP Core OVH(%) in model OVH(%) in Apple A5 OVH(%) in Intel Atom

Processor 0.31 0.059 0.1

Memory Controller 0.543 0.103 0.175

SPI Controller 0.043 0.008 0.014

Negligible w.r.t.
full SoC die area

89

All Rights Reserved

Patchability Analysis

Prasad et al., ASPDAC 2018

90

All Rights Reserved

Hardware Patch

Debnath et al., ASPDAC 2018, Under Review

Software FlowOverall architecture

91

All Rights Reserved

Hardware Patch

Debnath et al., ASPDAC 2018, to appear

What enables
patching?

• An upgradable security
policy engine

• Access to (all) security-
critical events

─ Interface w/ on-chip
debug infrastructure

─ Interface with
security wrapper

• Remote authentication &
upgrade install hardware
(inside RSPE)

92

All Rights Reserved

CAD Framework
• Systematic approach to

synthesize policies into
FPGA based RSPE

Key Features:
• Amenable for

automatic synthesis of
arbitrary policies

• 3-tuple format: <timing,
predicate, action>

Mapping Diverse Security Policies on
Embedded FPGA-based RSPE

93

All Rights Reserved

Representative SoC Security Policies

Policy
#

Predicate Part Action Part IPs Involved

1 User mode & (Mem RD/WR
Req. by User — Mem
RD/WR Req. by IP A — ...)

RD/WR Addr. within specified
range

DLX µP & any other
IP with access to
system memory

2 Supervisor mode & (Mem
RD Req. by User — Mem
RD/WR Req. by IP A — ...)

RD Addr. within shared
memory range & No WR

DLX µP & any other
IP with access to
system memory

3 Debug mode & (Trace cells
busy — power mgmt.
module busy)

No update in power control
firmware & no changes in SPI
controller Config. Reg

Power mgmt. module
& SPI controller

4 !(Supervisor mode) & (Inst.
Mem Update Req. through
test access port or SPI
controller)

No update of Inst. Mem.
allowed

DLX µP

5 Active Crypto mode No interrupt or Memory
Access Req. from the DLX
core or any IP is allowed

Crypto module,
processor and other
IPs access to
processor

94

All Rights Reserved

Results Analysis

Tuple
Type

Test
Wrappers

(Number of
policies)

Security
Wrappers

(Number of
policies)

Design-for-debug
Infrastructure

(Number of
policies)

2P, 1A 570 490046760 2987015850

4P, 1A 14535 7.91E+13 1.59E+15

8P, 1A 377910 1.75E+23 3.89E+25

8P, 2A 377910 4.42E+25 1.81E+28

• Number of Arbitrary Security Policies
− Observable signals : Predicate tuples
− Controllable signals : Action tuples
− DfD Integration demonstrates superior performance

95

All Rights Reserved

Results Analysis

Die
Area
(µm2)

Clock
Freq.
(MHz)

Cycle
Count

(10
Policies)

Total
Latency

(µs)

Dynamic
Power
(mW)

Static
Power
(mW)

Total
Energy

(nJ)

DLX
µP

0.724 203 210 1.04 14.27 63.48 80.86

FPGA 1.06 138 26 0.189 64.9 20.43 16.13

Ratio 0.68 1.47 8.07 5.49 0.22 3.11 5.02

Area, Performance, Power, and Energy Values for DLX
uP Core and FPGA Based RSPE Module

• Energy and Latency:
− FPGA-based design vs MCU-based Design
− FPGA-based design:

• 5.02 times more energy efficient
• 5.5 times faster

96

All Rights Reserved

Summary
• Developed and evaluated a novel infrastructure IP for

security!
• Protects against both HW and SW Security Issues
• Developed a novel architecture for efficient

implementation of SoC security policies
– Flexible (& upgradable in field)
– Enables systematic implementation
– Lower overhead
– Easy-to-debug
– Minimal impact on the IP blocks (standardized security

wrapper)
[Recent] Developed formal verification flows for policies

97

All Rights Reserved

Ø Designing and validating security of complex modern
embedded systems is a critical problem

Ø Addressing the problem requires strong collaboration
among several areas in Computer Science and
Engineering

Ø We have made some progress, but our research has
only scratched the surface of this vast domain

Ø The future road in this area is uncertain, exciting, and
crucial to our well-being

Conclusion
“It’s good to do something that scares you”
- --- Ellen DeGeneres

9898

All Rights Reserved

#PowerfulYetSecure

THANKS!

Questions ?

99

All Rights Reserved

References:
1. A. Basak, S. Ray, and S. Bhunia, “A Flexible Architecture for Systematic Implementation of

SoC Security Policies”, Intl. Conf. on Computer-Aided Design (ICCAD), 2015
2. T. Fox-Brewster, “Voodoo Hackers: Stealing Secrets from Snowden’s Favorite OS

Is Easier than You Think,
http://www.forbes.com/sites/thomasbrewster/2015/03/18/hacking- tails-with-rootkits

3. A. Basak, S. Bhunia, and S. Ray, “Exploiting Design-for-Debug for Flexible SoC Security
Architecture”, Design Automation Conference (DAC), 2016.

4. A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security Assurance for System-on-Chip Designs
with Untrusted IPs”, IEEE Transactions on Information Forensics & Security (TIFS), 2017.

5. A. Debnath et. al., “SoC Security Architecture for Hardware Patch”, ASPDAC, 2018.
6. L. Greenemeier, “iPhone Hacks Annoy AT&T but Are Unlikely to Bruise Apple,”

Scientific American, 2007.
7. S. J. Greenwald, “Discussion Topic: What is the Old Security Paradigm,” in

Workshop on New Security Paradigms, 1998, pp. 107–118.
8. C. Kallenberg and X. Kovah, “How Many Million BIOSes Would You Like to Infect?”

in The 15th Annual CanSecWest Conference (CanSecWest 2015), 2015.
9. S. Krstic, J. Yang, D. W. Palmer, R. B. Osborne, and E. Talmor, “Security of SoC

Firmware Load Protocol,” in IEEE HOST, 2014.
10. S. Ray, J. Yang, A. Basak, and S. Bhunia, “Correctness and Security at Odds: Post-silicon

Validation of Modern SoC Designs”, Design Automation Conference (DAC), 2015.
11. S. Ray, T. Hoque, A. Basak, and S. Bhunia, “The power play: Security-energy trade-offs in the

IoT regime”, ICCD, 2016.
12. S. Ray, M. Tehranipoor, & S. Bhunia, “System-on-Chip Platform Security Assurance,

Architecture and Validation”, Proceedings of IEEE, 2018 100

