Secure Communication for Intra-Vehicular CANFD Network

Yutian Gui, Ali Shuja Siddiqui, Jim Plusquellic* and Fareena Saqib Dept. of Electrical Engineering, University of North Carolina at Charlotte and University of New Mexico* ygui@uncc.edu, asiddiq6@uncc.edu, jimp@ece.unm.edu, fsaqib@uncc.edu

MOTIVATION AND INTRODUCTION

Electronic Control Units (ECU) are enriched devices that control mechanical parts through control signals. ECUs are connected via Controller Area Network (CAN) bus to communicate with each other. Recently, the security risk of intra-vehicular communication has emerged due to the unprotected architecture of ECU and CAN bus. Some works have performed successful attack on in-car communication system. Therefore, there is a critical need to enhance the security of intra-vehicular communication. Trusted platform module (TPM) is a specialized chip which is designed to enhance the security of computing devices. TPM provides the functionality of Root of Trust (RoT) realized by a series of operations, including key generation, key storage, and authentication.

In this demo, we introduce the vulnerability of the communication between different ECUs and propose a novel secure communication model to protect the intra-vehicular communication from attacks aimed at the message frames such as replay and message spoofing attacks. The demo includes fast speed latest Controller Area Network Flexible Data-rate (CAN-FD) standard.

Keywords—CAN bus; ECU; secure communication; hardware security

PROPOSED ARCHITECTURE AND WORKFLOW

In the demo, we demonstrate a full-covered solution of secure communication including secure key generation and storage, data encryption, data verification and data signing. In this demo, all the message frames are transmitted in CAN-FD standard. The proposed secure framework with enriched ECUs connected over CAN bus is shown in Figure 1.

Each ECU node implements a TPM. TPM provides the functionality of key generation and secure storage for keys. All the public keys are shared between trusted nodes before communication. 3.Once deployed in field, each node encrypts and signs (optional) message by TPM module before sending. The encrypted and signed message is encapsulated in an extend CANFD frame. On the receiver side, the encrypted data is verified with sender's public key. If the verification fails, the sender will be considered as a corrupted node and the incident will be logged.

Fig. 1. Proposed Framework

HARDWARE USED AND SETUP

Hardware used in our demo is as follows:

- Microcontrollers based components communicating over CANBus.
- CAN with Flexible Data-Rate (CAN-FD) controller and transceiver.
- Trusted Platform Module (TPM).

The setup of proposed demo is shown in Figure 2. In this demo, all the components are connected using two SPI interfaces on the Raspberry PI. All the secure functionalities are provided by TPM.

Fig. 2. Hardware Setup

OBSERVABLES

In our demo, we will firstly demonstrate message transmission based on CAN-FD standard between two unprotected CANBus nodes. We will show the secure communication between two authorized nodes based on the proposed framework step by step. The whole process includes message encryption and authentication by TPM, traffic control on the sender side by thresholding module and the access control on both of sender side and receiver side. The One example of public key and encrypted data frame is shown in figures 3 and figure 4.

00000000:	5600	0000	2300	0b00	7200	0600	0000	0000	V#r
00000020:	0000	0000	0000	0000	0000	0000	0000	0000	
00000030:	0000	0000	0000	0000	0000	0000	0000	0000	
00000040:	0000	0000	0000	0000	0000	0000	0000	0000	
00000050:	1000	0000	0000	1000	0000	0000	0300	1000	
00000060:	0000	0000	2000	26d9	1147	d0eb	414c	f0e9	&GAL
00000070:	30c4	7c7b	7321	bc39	5d83	6091	£319	be38	0. {s!.9].`8
00000080:	818e	28da							(.<
00000090:	0000	0000	0000	2000	d65a	b10e	719e	351b	zq.5.
000000a0:	ec72		e99a	8df4	eadd	b448	f1f6	a2d2	.r
000000b0:	8b4f	7706	5040	2d46	0000	0000	0000	0000	.Ow.P@-F
00000c0:									
:0b000000	0000	0000	0000	0000	0000	0000	0000	0000	
000000e0:									
000000f0:	0000	0000	0000	0000	0000	0000	0000	0000	
00000100:	0000	0000	0000	0000					
00000110:	0000	0000	0000	0000	0000	0000	0000	0000	
00000120:									
00000130:	0000	0000	0000	0000	0000	0000	0000	0000	
00000140:									
00000150:	0000	0000	0000	0000	0000	0000	0000	0000	
00000160:					_				

Fig. 3. Public key

00000000:	02cf	1177	f2f9	c4e5	3082	0806	8732	969d	w02
00000010:	a62b	8cf6	2b7e	abdd	eb6d	da1d	6214	9995	.++~mb
00000020:	f9f5	79e1	5490	0db7	e9c0	0930	0fbf	1681	y.T0
00000030:	3772	b06c	1e96	1f01	9dc9	7707	7be6	6d75	7r.1w.{.mu
00000040:	3a91	ae86	6a7c	d851	ff5b	fa0f	1dd3	ef4d	:j .Q.[M
00000050:	97be	2564	7ec2	21fc	27d2	a666	e6bd	6e74	%d~.!.'fnt
00000060:	7e4f	4f59	eff2	84f4	26ea	773f	e245	d7d7	~00Y&.w?.E
00000070:	6111	f110	3cb0	db85	b76c	9c1c	9a66	f50c	a <lf< th=""></lf<>
00000080:	fa60	0c8e	2222	9f66	f291	11fe	c8e6	d678	.`"".fx
00000090:	5e67	b1b0	5626	9cb3	09f9	93d6	30ec	aa12	^gV&0
000000a0:	ae09	be4e	7737	8eea	4e58	33bb	1741	6 f 72	Nw7NX3Aor
000000b0:	5efa	6966	1bf9	c7ec	c948	9924	e823	2267	^.ifH.\$.#"g
000000c0:	5e3f	a102	6a2c	c9db	e630	2053	35a9	6405	^?j,0 s5.d.
:0b000000	d321	fd8a	d253	86ab	a363	5b34	43ac	bd15	.!sc[4C
000000e0:	e045	ebd6	5078	0c9c	4477	11b6	9e79	1fb2	.EPxDwy
000000f0:	8906	b6fc	d41e	dabe	f2cb	2f6a	a423	3e76	/j.#>v

Fig. 4. Encrypted data frame