
Abstract
Secure boot within an FPGA environment is tradition-

ally implemented using hardwired embedded cryptographic
primitives and NVM-based keys, whereby an encrypted bit-
stream is decrypted as it is loaded from an external storage
medium, e.g., Flash memory. A novel technique is proposed
in this paper that self-authenticates an unencrypted FPGA
configuration bitstream loaded into the FPGA during the
start-up. The ICAP interface is accessed to read-out configu-
ration information of the unencrypted bitstream, which is
then used as input to SHA-3 to generate a digest. In contrast
to conventional authentication where the digest is computed
and compared with a second pre-computed value, we use the
digest as challenges to a hardware-embedded delay PUF
called HELP. The delays of the paths sensitized by the chal-
lenges are used to generate a decryption key using the HELP
algorithm. The decryption key is used in the second stage of
the boot process to decrypt the application. Malicious tam-
pering with the unencrypted bitstream changes the chal-
lenges, and the corresponding decryption key, resulting in
key regeneration failure.
1 Introduction

SRAM-based FPGAs need to protect the programming
bitstream against reverse engineering and bitstream manipu-
lation (tamper) attacks. Fielded systems are often the targets
of attack by adversaries seeking to steal intellectual property
through reverse engineering, or attempting to disrupt opera-
tional systems through the insertion of kill switches known
as hardware Trojans. Internet-of-things (IoT) systems are
particularly vulnerable given the resource-constrained and
unsupervised nature of the environments in which they oper-
ate.

FPGAs requiring secure boot usually store an encrypted
version of the programming bitstream in an off-chip non-
volatile memory (NVM) as a countermeasure to these types
of attacks. Modern FPGAs provide on-chip battery-backed
RAM and/or fuses for storage of a decryption key, which is
used by vendor-embedded encryption components within
the FPGA to decrypt the bitstream as it is read from the
external NVM during the boot process [1]. Recent attack
mechanisms that are able to read out on-chip stored keys
therefore threaten the security of the boot process [2].

In this paper, we propose a PUF-based key generation
strategy that addresses the vulnerability of on-chip key stor-
age. Moreover, the proposed secure boot technique is self-
contained in that none of the FPGA-embedded security
primitives or FPGA clocking resources are utilized. We refer
to the system as Bullet-Proof Boot for FPGAs (Bullet-
ProoF). BulletProoF uses a PUF implemented in the pro-
grammable logic (PL) side of an FPGA to generate the
decryption key at boot time, and then uses it for decrypting

an off-chip NVM-stored second stage boot image. The sec-
ond stage boot image contains PL components as well as
software components such as an operating system and appli-
cations. BulletProoF decrypts and programs the PL compo-
nents directly into those portions of the PL side that are not
occupied by BulletProof using dynamic partial reconfigura-
tion while the software components are loaded into DRAM
for access by the processor system (PS). The decryption key
is destroyed once this process completes, minimizing the
time the decryption key is available.

BulletProoF is stored unencrypted in an off-chip NVM
and is therefore vulnerable to manipulation by adversaries.
However, the tamper-evident nature of BulletProoF prevents
the system from booting the components present in the sec-
ond stage boot image if tamper occurs because an incorrect
decryption key is generated. In such cases, the encrypted bit-
string is not decrypted and remains secure.

The hardware-embedded delay PUF (HELP) is lever-
aged in this paper as a component of the proposed tamper-
evident, self-authenticating system implemented within Bul-
letProoF. HELP measures path delays through a CAD-tool
synthesized functional unit, in particular the combinational
component of SHA-3 in the proposed system. Within-die
variations that occur in path delays from one chip to another
allow HELP to produce a device-specific key. Challenges for
HELP are 2-vector sequences that are applied to the inputs of
SHA-3. The timing engine within HELP measures the prop-
agation delays of paths sensitized by the challenges at the
primary outputs. The digitized timing values are used in the
HELP bitstring processing algorithm to produce a device-
specific key.
2 BulletProoF Enrollment Process

During enrollment when the key is generated for the first
time, HELP generates the key internally and transfers helper
data off of the FPGA. As shown in Fig. 1, the helper data is
stored in the external NVM unencrypted. The internally gen-
erated key is then used to encrypt the other components of
the external NVM by configuring AES in encryption mode.

BulletProoF embeds a configuration bit that determines
whether it is operating in Enroll mode or Boot mode. The bit
is labeled “Enroll/Boot config. bit” in Fig. 1. The trusted
party configures this bit to Enroll mode to create the Helper
data and to process the “UnEncrypted SSBI” to an
“Encrypted SSBI” that are both stored and used by the
fielded version to boot. Therefore, the Enroll and Boot ver-
sions are identical except for this bit.
2.1 BulletProoF Fielded Boot Process

The FSBL loads the unencrypted version of BulletProoF
from the external NVM into the PL portion of the FPGA and
hands over control to BulletProoF. BulletProoF utilizes a
ring-oscillator as a clock source that cannot be disabled dur-

An Autonomous, Self-Authenticating and Self-Contained Secure Boot

Process for FPGAs

D. Heeger, W. Che+, F. Saqib*, Matt Areno^ and J. Plusquellic
University of New Mexico, Enthentica+, University of North Carolina, Charlotte*, Trusted and Secure Systems^,

University of New Mexico

ing the boot process once it is started. This prevents attacks
that attempt to stop the boot process at an arbitrary point to
reprogram portions of the PL using external interfaces, e.g.,
PCAP, SelectMap and JTAG PCAP.

1) BulletProoF reads slice configuration information
using the ICAP interface and controller

2) The configuration information is applied to SHA-3
to compute a digest(s). Note that SHA-3 is config-
ured in ‘functional mode’ during this step. The path
delays between the ICAP interface and SHA-3
interface are timed, and the digitized delays stored
in BRAM. This is done to prevent a reverse-engi-
neering attack that we discuss below.

3) SHA-3 is used to compute one (or more) digests.
4) The digests are used as challenges to the SHA-3

combinational block with SHA-3 configured in
PUF mode as they are generated.

5) The digitized timing values of sensitized paths are
stored in a second on-chip BRAM.

6) The HELP algorithm processes the digitized timing
values and Helper data which are stored in an
External NVM into a decryption key.

7) BulletProoF runs an integrity check on the key.
8) BulletProoF reads the encrypted 2nd stage boot

image (SSBI) from the external NVM. AES
decrypts the image and transfers the software com-
ponents into DDR and the hardware components
into the unused portion of the PL using dynamic
partial reconfiguration. Once completed, the system
boots.

Note that the Enroll/Boot configuration bit is masked to
zero when read from ICAP and used as input to SHA-3. This
ensures that the same configuration data is used in either
Enroll or Boot mode. Alternatively, it can be wired to an
input (along with the start signal which is not shown).

2.2 Security Properties

The proposed system has the following security proper-
ties:

• The enrollment and regeneration process proposed for
BulletProoF never reveals the key outside the FPGA.
Therefore, physical, side-channel-based attacks are nec-
essary in order to steal the key. We do not address side-
channel attacks in this paper, but it is possible to design
BulletProoF with side-channel attack resistance using
circuit countermeasures proposed previously.

• Any type of tamper with the unencrypted BulletProoF
bitstream or helper data by an adversary will only pre-
vent the key from being regenerated and a subsequent
failure of boot process. Note that it is always possible to
attack a system in this fashion, i.e., by tampering with
the contents stored in the external NVM, independent of
whether it is encrypted or not.

• Any attempt to reverse engineer the unencrypted bit-
stream in an attempt to insert logic between the ICAP
and SHA-3 input will change the timing characteristics
of these paths, resulting in key regeneration failure. For
example, the adversary my attempt to rewire the input to
SHA-3 to allow external configuration data (constructed
to exactly model the data that exists in the trusted ver-
sion) to be used instead of the ICAP data.

• The paths from the ICAP interface to the SHA-3 inputs
can be extended to run through the SHA-3 combina-
tional block for additional resilience to reverse-engi-
neering attacks. In other words, the blue and red
instances of SHA-3 (which represent only one module)
can be reversed in the figure, with functional mode run
AFTER PUF mode.

• BulletProoF uses a ring oscillator as a clock source.
Therefore, once BulletProoF is started, it cannot be
stopped by the adversary as mechanism to steal the key.

2.3 Hardware Demonstration and Observables

We will build the secure boot system as described and
carry out a live demonstration of the secure boot process by
decrypting a HELP encrypted version. A graphical user
interface will display the various stages of the boot process,
with the assistance of ‘hooks’ inserted into the secure boot
code for the purpose of the demonstration. A Xilinx Zynq
7020 SoC will be used as the demonstration platform. The
unencrypted second stage boot image will consist of a PL
side finite state machine that will be programmed into the
fabric by BulletProoF using dynamic partial reconfiguration.
The finite state machine will implement a simple design,
e.g., a serial interface, that will allow confirmation that the
system in fact booted.

3 References

[1] S. M. Trimberger, J. J. Moore, “FPGA Security: Motivations, Features,
and Applications”, Invited paper,Proceedings of the IEEE,Vol. 102,
No. 8, 2014, pp. 1248-1265.

[2] S. Skorobogatov, “Flash Memory ’Bumping’ Attacks”,Cryptographic
Hardware and Embedded Systems, 2010.

[3] J. Aarestad, P. Ortiz, D. Acharyya and J. Plusquellic, HELP: A Hard-
ware-Embedded Delay-Based PUF,Design and Test of Computers,
Mar., 2013, pp. 17-25.

Fig. 1. Enrollment and in-field secure boot process.

01011...

slice config data

11011... 00100... 11101... 11101...
00111...
11111...

11011...

ICAP interface

SHA-3
functional mode

SHA-3
PUF mode

1 Read slice config data

2 Use as input to SHA-3

3 Compute
digest

4 Use digest as
challenge for HELP

BRAM

5 Store digitized
path delays

151 230

16-bit digitized
path delays

97 349

HELP Algorithm
decrypt key

11010110001... AES

6 Generate key

7 Check key

Decrypt 2nd stage

To PL
and DDR

FPGA Programmable Logic

External NVM

Helper data Encrypted SSBI

boot images (SSBI)

ICAP to SHA-3
(Store digitized path delays)

1 Enroll/Boot config. bit

Boot
Boot

Enroll

8

Un-Encrypted SSBI

Enroll

