
A Processor + FPGA based Platform for Control Flow Integrity Enforcement
Student: Anirudh Iyengar, Advisor: Swaroop Ghosh & Trent Jaeger

1. Description of Research

The objective of this research is to maintain integrity against control flow hijacking using reconfigurable platform.

Existing security solutions require instrumentation of code that makes the software inflexible. The additional code

for runtime enforcement of integrity validation degrades performance. The secure hardware platforms such as,

ARM Trustzone require significant design overhead, code changes, and, affect performance due to restricted access

policies. Additionally, the hardware is not amenable to patching to address evolving threats. This project will

employ heterogeneous reconfigurable computing platforms created using FPGA (Field Programmable Gate Array)

to enforce security and circumvent performance impact. In heterogeneous platform, the FPGA will be configured

to validate the processor code execution to a predefined Control Flow Graph (CFG) through Control Flow Integrity

(CFI) enforcement engine. This approach will eliminate the instrumentation of code, keeping them flexible without

sacrificing performance. The reconfigurability of FPGA will offer provisions to patch the hardware with latest

updates and capabilities in sync with the evolving threat space and enable dynamic tradeoff between performance

and security. We will illustrate the effectiveness of this technique against standard benchmarks such as CoreMark,

Dhrystone etc.

2. Description of Demonstration

The FPGA will be programmed to emulate two modules (Fig. 1 (b)): (i) the soft-core processor (Nios2 in our

demonstration); and, (ii) CFI enforcement engine. We will first demonstrate the base operating mode of the Nios2

processor and the CFI module as shown in Fig. 1(a). Following which, the system will be benchmarked using

standard CPU benchmarks to obtain the base performance values. The next step will be to expose this system to a

tainted set of benchmarks, in-order to analyze the effectiveness of the proposed CFI validation engine. Patching of

the enforcement engine will be also demonstrated by using pre-designed patches and unmasking them to add new

features or enable new policies (Fig. 1(b)). The performance benefits of the proposed technique will be compared

with standard processor with software-based CFI enforcement that we have implemented in past [1] [2].

References: [1] Ge, Xinyang, et al. "Fine-Grained Control-Flow Integrity for Kernel Software." 2016 IEEE European

Symposium on Security and Privacy (EuroS&P). IEEE, 2016. [2] Xinyang Ge, Weidong Cui, Trent

Jaeger. GRIFFIN: Guarding Control Flows Using Intel Processor Trace. ASPLOS, April 2017

 (a) (b)

Fig. 1 (a) Test setup. We employ an Altera DE2-115 board with Cyclone IV configured to emulate a Nios2 processor with

CFI modules. A computer is connected to tally and interpret results; and, (b) conceptual picture of the proposed approach.

The CFI engine will monitor the processor traffic and validate CFI. Pre-defined masked patches will be incorporated in the

enforcement engine which will be unmasked to unveil new features.

NIOS2 + CFI ModulesUSB Blaster
Connection

Cyclone IV

RS232 port

Nios II CFI

Enforcement

engine

FPGA

controller

B
R

A
M

Pins for patching/

reconfig

PCIe Intf.

Flash drive

Keyboard

Mouse

Monitor

General purpose IOs

Config. pins

p1

p2

m
1

B
R

A
M

CFI Engine

p1, p2, p3.. are pre-determined

patches m1, m2, m3,… are muxes

to enable/disable a patch

m
2

