

A Zero-cost Approach to Detect Recycled SoC Chips Using Embedded SRAM

Zimu Guo, Md. Tauhidur Rahman, Mark M. Tehranipoor and Domenic Forte ECE Department, University of Florida

Florida Institute for Cybersecurity (FICS)

Motivations

Impact of counterfeit ICs.

- The Government and Industry Data Exchange Program (GIDEP) has seen a **six-fold increase** in reported counterfeit ICs since 2006.
- Information Handling Services Inc. (IHS) have pointed out that reports of counterfeit parts have increased by **25% every year** since 2001.
- Counterfeits result in substantial economic losses to the electronics industry, reportedly as high as hundreds of billions.
- Counterfeit parts decrease the overall system reliability.
- Manufactories lose reputation.

Current difficulties

- No one-size-fits-all solutions.
- Detection requires additional circuitries.

Detected by the techniques such as secure split-test (SST), electronic circuit ID (ECID), etc.

Major contributions

UNIVERSITY OF

Recycled IC detection

- First SRAM based approach
- Zero-cost

Aging-sensitive SRAM bit selection algorithm

- Based on SRAM power-up readings
- Under room temperature and high temperature

Parameter analysis

- ID length, threshold, etc.
- Low equal error rate

Measurements evaluation

- Four embedded SRAMs
- More than 10GB real data

SRAM Background

• Structure: popular 6-T SRAM (a)

(a) 6Ts COMS SRAM Cell

SRAM Background

- Structure: popular 6-T SRAM (a)
- Start-up behavior of SRAM cells varies due to process variations:
 - Non-skewed cells: candidates for SRAM TRNG
 - Fully-skewed cells: candidates for SRAM PUF
 - Partially-skewed cells: candidates for SRAM Counterfeit detection.

(a) 6Ts COMS SRAM Cell

Structure: popular 6-T SRAM (a) Start-up behavior of SRAM ce

SRAM Background

- Start-up behavior of SRAM cells varies due to process variations:
 - Non-skewed cells: candidates for SRAM TRNG
 - Fully-skewed cells: candidates for SRAM PUF
 - Partially-skewed cells: candidates for SRAM Counterfeit detection.

• SRAM aging:

- Hot carrier injection (HCI)
- Bias temperature instability (BTI)
- Aging effects on partially-skewed cells: change the start-up values.

(a) 6Ts COMS SRAM Cell

FLORIDA

Proposed methodology

Enrollment phase Verification phase

Proposed methodology

ASBs: Ageing-Sensitive
SRAM Bits (*partially-skewed cells*).
Gap: Designer-defined
parameter.
ID: ASB locations.
Threshold: a value used
to determined recycled
IC.

Verification phase

Proposed methodology

ASBs: Ageing-Sensitive
SRAM Bits (*partially-skewed cells*).
Gap: Designer-defined
parameter.
ID: ASB locations.
Threshold: a value used
to determined recycled
IC.

Score: a value generated by SRAM under test.

ASB qualification

• Ideal case: a SRAM cell's

ASB qualification

• Ideal case: a SRAM cell's

• More general case: a SRAM cell's

ASB qualification

• Ideal case: a SRAM cell's

• More general case: a SRAM cell's

- Gap
 - A value ranging from 0 to 1 representing this *probability change*.

Power up the SRAM for enrollment

New SRAM

"Aged" SRAM

ID is calculated with respect to **Gap** g

Bit locations (whole SRAM, K bits)

ID is calculated with respect to Gap g

ID is calculated with respect to **Gap** g

ID is calculated with respect to Gap g

Bit locations (whole SRAM, K bits)

Threshold calculation

Threshold calculation

1

ID

→ Before aging:
$$P_{1|RT}(k) \le \frac{1-g}{2}$$
 → expected number of '1's < $|Loc_1| \times \frac{1-g}{2}$

Threshold calculation

 Step 1: Load ID (consists of two independent parts Loc₀ and Loc₁).

- Step 1: Load ID (consists of two independent parts Loc₀ and Loc₁).
- Step 2: Power up SRAM and read the value specified by ID.

- Step 1: Load ID (consists of two independent parts Loc₀ and Loc₁).
- Step 2: Power up SRAM and read the value specified by ID.
- **Step 3**: Count '0'/'1's among the bits specified by $Loc_0/Loc_1 (TN_0/TN_1)$.

- **Step 1**: Load **D** (consists of two independent parts) Loc_0 and Loc_1).
- **Step 2**: Power up SRAM and read the value specified by **ID**.

Bit locations (whole SRAM, K bits)

Step 3: Count '0'/'1's among the bits specified by Loc_0/Loc_1 (TN_0/TN_1).

FLORIDA

Florida Institute for Cybersecurity (FICS)

Predicted ID extracted from

- New SRAM → New SRAM in room temperature
- "Aged" SRAM → New SRAM in High/Low temperature
- **{1**, 4, 5, **12**, 15, **26**, 60, **78**, ... **}**

Predicted ID extracted from

- New SRAM → New SRAM in room temperature
- "Aged" SRAM → New SRAM in High/Low temperature

{1, 4, 5, **12**, 15, **26**, 60, **78**, ... **}**

True ID extracted from

- New SRAM → New SRAM in room temperature
- "Aged" SRAM → Aged SRAM in room temperature {1, 3, 6, 12, 26, 27, 31, 59, 78, ... }

Predicted ID extracted from

- New SRAM → New SRAM in room temperature
- "Aged" SRAM → New SRAM in High/Low temperature
- {**1**, 4, 5, **12**, 15, **26**, 60, **78**, ... }

Overlapped locations {1,12,26,78, ... }

True ID extracted from

- New SRAM → New SRAM in room temperature
- "Aged" SRAM → Aged SRAM in room temperature {1, 3, 6, 12, 26, 27, 31, 59, 78, ... }

Overlapped locations	Gap values					
Predicted ID	0.5	0.6	0.7	0.8	0.9	I
High temperature	18%	17%	14%	9%	14%	25%
Low temperature	12%	9%	7%	8%	7%	20%

Experiment Setup

- Platforms: 4 Spartan-3 FPGAs with 2 MB on-board SRAM
- Temperature corners: Low 0°C, Room 20°C, High 80°C.
- Voltage corners: 3.0V, 3.3V and 3.6V.
- 10 trials for each testing corner.
- Aging duration: 5 hours accelerated aging.

FLORIDA

Experiment Setup

- Platforms: 4 Spartan-3 FPGAs with 2 MB on-board SRAM
- Temperature corners: Low 0°C, Room 20°C, High 80°C.
- Voltage corners: 3.0V, 3.3V and 3.6V.
- 10 trials for each testing corner.
- Aging duration: 5 hours accelerated aging.

Metrics

- False Accept Rate (FAR)
 - $FAR = \frac{\text{The number of trials which detect the aged SRAM as new}}{FAR}$
 - Total numbr of trails
- False Reject Rate (FRR)
 - $FRR = \frac{\text{The number of trials which detect the$ **new**SRAM as*aged* $}$
 - Total numbr of trails
- Equal Error Rate (*EER*)
 - $EER = \frac{FAR + FRR}{2}$
- ID length

Effect of different Gap values

Score distributions on different Gap values

UNIVERSITY of **FLORIDA**

Area 1: Large error rates due to a small gap values. New and Aged SRAM scores heavily overlap.

SRAM #	EER	FAR
l	0.21	0.25
2	0.05	0.05
3	0.15	0.20
4	0.25	0.25

Florida Institute for Cybersecurity (FICS)

Area 3 and **4**: Large gap values result in short IDs. One bit error leads to a large total error rate.

SRAM #	EER	FAR
	0.00	0.00
2	0.14	0.28
3	0.00	0.00
4	0.00	0.00

Florida Institute for Cybersecurity (FICS)

-FAR_{Multiple} -FAR_{Single}--EER_{Single}-EER_{Multilpe} -ID length Area 1, 2, 3 and 4 10⁵ <mark>ہ</mark>5 0.5 0.5 length (# of bits) ID length (# of bits) 10⁴ 0.4 0.4 Error Rate 0.3 0.2 Error Rate 10³ 0.3 '10² 0.2 10¹ 0.1 0.1 ۱0⁰ 10⁰ 0 0 0.6 0.8 0.6 0.8 1 (a) SRAM 1 (b) SRAM 2 gg10⁵ 10⁵ 0.5 0.5 (# of bits) length (# of bits) 10⁴ 0.4 0.4 10⁴ Error Rate 2.0 Error Bate Error Rate 10³ length (10² 0.2 0.1 0.1 0 10⁰ 100 0 0 0.8 0.6 0.6 0.8 gg(c) SRAM 3 (d) SRAM 4

Area 2: Good operation range with respect to robustness and accuracy.

SRAM #	EER	FAR
I	0.01	0.00
2	0.00	0.00
3	0.03	0.00
4	0.00	0.00

Florida Institute for Cybersecurity (FICS)

Conclusion

- Recycled ICs detection with no hardware overhead.
- Acceptable overall accuracy (more than 97%).
- Strict detection performance (100% detection of aged SRAMs).

Future work

- Test on more SRAMs.
- Apply shorter aging time.
- Increasing the trials during the enrollment phase.
- Apply reinforced aging.

Questions?

Florida Institute for Cybersecurity (FICS)

Backup slides

Florida Institute for Cybersecurity (FICS)

