A Key-centric Processor Architecture
for Secure Computing

David Whelihan, Kate Thurmer, and Michael Vai

HOST 2016

]@ LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Distributed Computing, Distributed Threat

« MIT LL is building a synthesizable
Sparc v8 compatible processor
core that embeds

— Stable-key Physical Unclonable
Function (PUF)

— Deeply embedded key
management

— Hardware-enforced mandatory
code and data decryption

* Fosters the creation of trusted
groups of computing devices

— Dynamic keying

Provides a foundation for holistic data protection, embedding security and
encryption technology deeply inside of the processor architecture

HOST 2016 -2 LINCOLN LABORATORY

DJW 5/5/16
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Critical Enabling Technology

Processors can processor

be selectively
targeted v

Processors and processes share code,
data and communication keys

N

/

A Program

(T\eoderbata—

- —
",:‘II ----- ‘,’_‘P ille’tgfiata Ke’)(\s‘et Signature
1 1 1 1
? ? @ (@ keywrap

@]

Keywrap

\

J

|
Participant Records

Execution rule (e.g. this code can
never execute in supervisor mode)

ﬂ PKI Credential set

._“ Symmetric Key

Inﬂl Key Agreement

n Symmetric Encryption
Y ye

PKl-enabled key management locks keysets that encrypt code, data and
communication to collections of processors

HOST 2016 -3
DJW 5/5/16

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Benefits

* Features
— Mandatory de/encryption of code and data

— Encrypted, relocatable libraries locked to specific
processors

— Security features enabled by the key management
system
* Enabling
— Trusted networks of cooperating processors
— Separately encrypted functions and libraries
— Progressive security gradations

This processor is a vital piece of a distributed and
cooperative processing capability with deeply embedded data and code

protection

HOST 2016 4
DJW 5/5/16

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

]@[How It Works

« Simplified Sparc v8
microprocessor

— The execution unit performs
math on data stored in
registers

— Code and data are pulled from
fast memory caches

— Caches fetch code and data
from slower, but much larger

main memory

Execution

Registers

N
|| N

hY
N\
AN

Registers

Caches

| |

Main
Memory

The Sparc architecture specifies many register windows. Programs switch
in and out of windows when they need to perform a new operation

HOST 2016 -5
DJW 5/5/16

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

]@[How It Works

« Simplified Sparc v8
microprocessor

— The execution unit performs
math on data stored in
registers

— Code and data are pulled from
fast memory caches

— Caches fetch code and data
from slower, but much larger
main memory

Execution «——
Registers
N\
|| N
AY
N\
T .
Registers
Caches
A
Decrypt \
I
_ Forthis example, we
Main will ignore data
Memory caching and focus
on code

Run-time decryption and encryption is inserted into the code and data paths

HOST 2016 -6
DJW 5/5/16

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ How It Works

* Encrypted context (ctx)

— An encrypted context is a set
of keys bound to a sequence
of instructions and its register

state
— The current ctx affects:

- What keys are used to decrypt

code and data

Execution

CTX keysets are loaded from keywraps targeted at this processor

"/_\‘l'l ----- ",—\!- Me’t,a\fiata Ke’yg.‘et Signature

1 1 1 1 | 1

? ? O E keywrap
f‘ ‘

-

Registers

- | Caches

Registers

NULL context
has no keys

keyO0: ffda392
key1:285ffcd!

Encrypted contexts are loaded from keywraps

HOST 2016 -7
DJW 5/5/16

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

&

How It Works

mov 1, %I0

Execution begins

wr %I0, %asr31

(ctx 0)

<encrypted co
<encrypted code>
<restore>

_ <encrypted code>

Encrypted
(ctx 1)
\

call encrypted_function

Execution

NULL context:
Decryptor is off

- | Caches

Main
Memory

Registers

N
\
N\
N

NULL context
has no keys

key0: ffda392
key1:285ffcd

In ctx 0, the NULL context, the decryptor is turned off

HOST 2016 -8
DJW 5/5/16

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

How It Works

&

Execution Registers
—_ mov 1, %I0
S wr %10, %asr31 Mo
:"g call encrypted_function S N
nop

encrypted_function:
[<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>

- | Caches

Encrypted
(ctx 1)
\

_ <encrypted code> NULL context

has no keys

mov 1, %I0

key0: ffda392
key1:285ffcd:

Instructions are executed normally by fetching from main memory,
to cache, and into the execution pipeline

oA LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

How It Works

&

Execution Registers
—_ mov 1, %I0
S wr %10, %asr31 Mo
:"g call encrypted_function S N
nop

encrypted_function:
[<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>

mov 1, %I0

- | Caches

Encrypted
(ctx 1)
\

_ <encrypted code> NULL context

has no keys

wr %lI0, %asr31

key0: ffda392
key1:285ffcd:

Instructions are executed normally by fetching from main memory, to cache,
and into the execution pipeline

oW et LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

How It Works

&

mov 1, %I0 11jilely
mov 1, %I0

wr %I0, %asr31

call encrypted_function
nop
encrypted_function:

[<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>

(ctx 0)

(1]
ctx

wr %I0, %asr31

- | Caches

Encrypted
(ctx 1)
\

_ <encrypted code> NULL context

has no keys

key0: ffda392
key1:285ffcd

call encrypted_function

The currently executing instruction places data into one register window,
which is bound to the NULL context

oW et LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

How It Works

&

—
wr %10, %asr31 1%}

—_ mov 1, %I0
S wr %I0, %asr31 Mo
:"g call encrypted_function S N
nop
encrypted_function:
<encrypted code> call encrypted_function

<encrypted code>
<encrypted code>
<encrypted code>
<restore>

- | Caches

Encrypted
(ctx 1)
\

_ <encrypted code> NULL context

has no keys

B
BE

key0: ffda392
key1:285ffcd

ain
Memory |

Writing a special register instructs the process or that the next “call”
instruction will shift contexts to ctx 1

oW e LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

How It Works

&

Next CTX

call encrypted_function
mov 1, %I0

wr %I0, %asr31

call encrypted_function
nop
encrypted_function:

[<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>

(ctx 0)

- | Caches

Encrypted
(ctx 1)
\

<restore>
_ <encrypted code>

<secure code>

NULL context
has no keys

key0: ffda392
key1:285ffcd

The call shifts the register window, hiding the callers state
from the new code

HOST 2016 -13

DJW 5/5/16 LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

How It Works

&

B ==

call encrypted_function |o s

<encrypted code>

—_ mov 1, %I0
S wr %I0, %asr31
:"g call encrypted_function M
nop
encrypted_function:
<encrypted code> nop x] :
g _ <encrypted code> Registefs
gg | <encrypted code> | Caches
2 3 ctx
5 <restore> -

NULL c¢ntext
has nojkeys

_ <encrypted code> z"l
ecryp V\

key0: ffda392
key1:285ffcd

<encrypted code>

The new window is bound to ctx 1, and therefore shifts the keyset to
activate the instruction decryptor

oW et LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

How It Works

&

xecution [e—
mov 1, %I0

<encrypted code>
<restore>

S wr %I0, %asr31
:"g call encrypted_function M
nop
encrypted_function:
<encrypted code> .
g _ <encrypted code> Registefs
gg | <encrypted code> Caches
0L
c
L

_ <encrypted code>

NULL c¢ntext
has nojkeys

key0: ffda392
key1:285ffcdc

The called code is decrypted

oW e LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

How It Works

&

restore

Execution
mov 1, %I0

wr %I0, %asr31

call encrypted_function
nop
encrypted_function:

[<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>

(ctx 0)

<decrypted cod - | Caches

Encrypted
(ctx 1)
\

!

_ <encrypted code> NULL context

has no keys

key0: ffda392
key1:285ffcd

If the encrypted context attempts to access the caller’s state (in the other
window) by executing a “restore” instruction, the window shifts...

oW e LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

How It Works

&

<decrypted code>

Execution
mov 1, %I0

wr %I0, %asr31

call encrypted_function
nop
encrypted_function:

[<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>

(ctx 0)

<GARBAGE>

- | Caches

Encrypted
(ctx 1)
\

!

_ <encrypted code> NULL context

has no keys

key0: ffda392
key1:285ffcd

...and forcibly changes the ctx back to 0, and thus turning off decryption of the
code, resulting in a garbage code fetch

oW eae LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Processor Features

Fully synthesizable System-On-Chip

High-assurance Suite-B key management

Tightly coupled but differently encrypted code streams

Encrypted, relocatable libraries locked to specific instances of
the processor

High-speed decryption of code and data
— For AES-128: Little to no performance hit (XOR in the data path)

— For AES-256: 2 cycles of latency at the start of a missed instruction
stream

— No penalty for cache hits

HOST 2016 -18 LINCOLN LABORATORY

DJW 5/5/16
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Vulnerabilities (not exhaustive)

* The processor is not side-channel resistant (currently by
choice)

— Differential Power Analysis
— Cache timing side-channel

 The data-cache scheme involves changing data under an XOR
mask

« Code and data streams currently have no integrity protection

— Code and data can be read in from AES-GCM encrypted flows, but
they are AES-CTR mode encrypted when executing

HOST 2016 -19 LINCOLN LABORATORY

DJW 5/5/16
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

]@[Summary

« We show a novel embedded processor
that protects data-in-use by making
cryptographic operations intrinsic to
processor execution

* The processor enables:

Progressive security gradations

Security level specified by the application
writer

Full encryption and masking of code and
data

Different code/data keys within a single
code stream

Relocatable encrypted libraries

Secure Data-In-Use

This work builds toward a holistic approach to data protection that considers

the entire data life-cycle

HOST 2016 -20

DJW 5/5/16

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

© 2016 Massachusetts Institute of Technology.

Delivered to the US Government with Unlimited Rights, as defined in
DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any
copyright notice, U.S. Government rights in this work are defined by
DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of
this work other than as specifically authorized by the U.S. Government
may violate any copyrights that exist in this work.

HOST 2016 -21
DJW 5/5/16

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

