
David Whelihan, Kate Thurmer, and Michael Vai

HOST 2016

A Key-centric Processor Architecture
for Secure Computing

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.
This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002
and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the Assistant Secretary of Defense for Research and Engineering.

HOST 2016 -2
DJW 5/5/16

Distributed Computing, Distributed Threat

Provides a foundation for holistic data protection, embedding security and
encryption technology deeply inside of the processor architecture

data
server

• MIT LL is building a synthesizable
Sparc v8 compatible processor
core that embeds
– Stable-key Physical Unclonable

Function (PUF)
– Deeply embedded key

management
– Hardware-enforced mandatory

code and data decryption

• Fosters the creation of trusted
groups of computing devices
– Dynamic keying

HOST 2016 -3
DJW 5/5/16

Processors can
be selectively

targeted 1

Participant Records

Critical Enabling Technology

A Program

processor processor processor

p0 p2p1
2

KeysetMetadata Signature

keywrap1 2

1

1 PKI Credential set

Symmetric Key

Key Agreement

Symmetric Encryption

PKI-enabled key management locks keysets that encrypt code, data and
communication to collections of processors

Code/Data

Keywrap

Processors and processes share code,
data and communication keys

Execution rule (e.g. this code can
never execute in supervisor mode)

HOST 2016 -4
DJW 5/5/16

• Features
– Mandatory de/encryption of code and data
– Encrypted, relocatable libraries locked to specific

processors
– Security features enabled by the key management

system

• Enabling
– Trusted networks of cooperating processors
– Separately encrypted functions and libraries
– Progressive security gradations

Benefits

This processor is a vital piece of a distributed and
cooperative processing capability with deeply embedded data and code

protection

HOST 2016 -5
DJW 5/5/16

Execution Registers

Main
Memory

Caches

• Simplified Sparc v8
microprocessor
– The execution unit performs

math on data stored in
registers

– Code and data are pulled from
fast memory caches

– Caches fetch code and data
from slower, but much larger
main memory

How It Works

Caches

Registers

Registers

The Sparc architecture specifies many register windows. Programs switch
in and out of windows when they need to perform a new operation

HOST 2016 -6
DJW 5/5/16

• Simplified Sparc v8
microprocessor
– The execution unit performs

math on data stored in
registers

– Code and data are pulled from
fast memory caches

– Caches fetch code and data
from slower, but much larger
main memory

How It Works

Execution Registers

Main
Memory

CachesCaches

Registers

Registers

For this example, we
will ignore data

caching and focus
on code

Run-time decryption and encryption is inserted into the code and data paths

DecryptctxDecrypt

HOST 2016 -7
DJW 5/5/16

ctx

ctx

Execution Registers

Main
Memory

CachesCaches
Registers

ctx
• Encrypted context (ctx)

– An encrypted context is a set
of keys bound to a sequence
of instructions and its register
state

– The current ctx affects:
• What keys are used to decrypt

code and data
• What portions of cached code

and memory are accessible
– Register windows are bound to

secure contexts
• Critical innovation

How It Works

ctx
ctx
ctx

Decrypt

ctx

ctx 0

ctx 1

ctx 2

ctx n

Encrypted contexts are loaded from keywraps

Registers

ctx

NULL context
has no keys

key0: ffda392cfbb
key1:285ffcd897d

keywrap

CTX keysets are loaded from keywraps targeted at this processor

KeysetMetadata Signature

1 2

HOST 2016 -8
DJW 5/5/16

Caches

Execution Registers

Main
Memory

Registers

0

ctx
ctx
ctx

ctx

Decryptctx

0

ctx 0

ctx 1

ctx 2

ctx n

How It Works

ctx

Decryptctx NULL context
has no keys

key0: ffda392cfbb
key1:285ffcd897d

mov 1, %l0
wr %l0, %asr31
call encrypted_function
nop

encrypted_function:
<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>
<encrypted code>

(c
tx

 0
)

En
cr

yp
te

d
(c

tx
 1

)

Execution begins

NULL context:
Decryptor is off

In ctx 0, the NULL context, the decryptor is turned off

HOST 2016 -9
DJW 5/5/16

Caches

Execution Registers

Main
Memory

Registers

0

ctx
ctx
ctx

ctx

Decryptctx

0

ctx 0

ctx 1

ctx 2

ctx n

ctx

Decryptctx NULL context
has no keys

key0: ffda392cfbb
key1:285ffcd897d

How It Works

mov 1, %l0

Instructions are executed normally by fetching from main memory,
to cache, and into the execution pipeline

mov 1, %l0
wr %l0, %asr31
call encrypted_function
nop

encrypted_function:
<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>
<encrypted code>

(c
tx

 0
)

En
cr

yp
te

d
(c

tx
 1

)

HOST 2016 -10
DJW 5/5/16

Caches

Execution Registers

Main
Memory

Registers

0

ctx
0

ctx

ctx

Decryptctx

0

ctx 0

ctx 1

ctx 2

ctx n

ctx

Decryptctx NULL context
has no keys

key0: ffda392cfbb
key1:285ffcd897d

How It Works

Instructions are executed normally by fetching from main memory, to cache,
and into the execution pipeline

mov 1, %l0

wr %l0, %asr31

mov 1, %l0
wr %l0, %asr31
call encrypted_function
nop

encrypted_function:
<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>
<encrypted code>

(c
tx

 0
)

En
cr

yp
te

d
(c

tx
 1

)

HOST 2016 -11
DJW 5/5/16

Caches

Execution Registers

Main
Memory

Registers

0

ctx
0

ctx

ctx

Decryptctx

0

ctx 0

ctx 1

ctx 2

ctx n

ctx

Decryptctx NULL context
has no keys

key0: ffda392cfbb
key1:285ffcd897d

How It Works

The currently executing instruction places data into one register window,
which is bound to the NULL context

mov 1, %l0

wr %l0, %asr31

call encrypted_function

1
mov 1, %l0
wr %l0, %asr31
call encrypted_function
nop

encrypted_function:
<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>
<encrypted code>

(c
tx

 0
)

En
cr

yp
te

d
(c

tx
 1

)

HOST 2016 -12
DJW 5/5/16

Caches

Execution Registers

Main
Memory

Registers

0

ctx
0

ctx

ctx

Decryptctx

0

ctx 0

ctx 1

ctx 2

ctx n

ctx

Decryptctx NULL context
has no keys

key0: ffda392cfbb
key1:285ffcd897d

How It Works

Writing a special register instructs the process or that the next “call”
instruction will shift contexts to ctx 1

1wr %l0, %asr31

call encrypted_function

nop

Next CTX

1

mov 1, %l0
wr %l0, %asr31
call encrypted_function
nop

encrypted_function:
<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>
<encrypted code>

(c
tx

 0
)

En
cr

yp
te

d
(c

tx
 1

)

HOST 2016 -13
DJW 5/5/16

Caches

Execution Registers

Main
Memory

Registers

0

ctx
0

ctx

ctx

Decryptctx

0

ctx 0

ctx 1

ctx 2

ctx n

ctx

Decryptctx NULL context
has no keys

key0: ffda392cfbb
key1:285ffcd897d

How It Works

The call shifts the register window, hiding the callers state
from the new code

1

Next CTX

1
call encrypted_function

nop

<secure code>

mov 1, %l0
wr %l0, %asr31
call encrypted_function
nop

encrypted_function:
<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>
<encrypted code>

(c
tx

 0
)

En
cr

yp
te

d
(c

tx
 1

)

HOST 2016 -14
DJW 5/5/16

Caches

Execution Registers

Main
Memory

Registers

0

1
0

ctx

ctx

Decryptctx

0

ctx 0

ctx 1

ctx 2

ctx n

ctx

Decrypt1
NULL context
has no keys

key0: ffda392cfbb
key1:285ffcd897d

How It Works

The new window is bound to ctx 1, and therefore shifts the keyset to
activate the instruction decryptor

1

Next CTX

1
call encrypted_function

nop

<encrypted code>

mov 1, %l0
wr %l0, %asr31
call encrypted_function
nop

encrypted_function:
<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>
<encrypted code>

(c
tx

 0
)

En
cr

yp
te

d
(c

tx
 1

)

HOST 2016 -15
DJW 5/5/16

Caches

Execution Registers

Main
Memory

Registers

0

1
0
1

ctx

Decryptctx

1

ctx 0

ctx 1

ctx 2

ctx n

ctx

Decrypt1
NULL context
has no keys

key0: ffda392cfbb
key1:285ffcd897d

How It Works

The called code is decrypted

1

Next CTX

1
nop

<decrypted code>

<encrypted code>

mov 1, %l0
wr %l0, %asr31
call encrypted_function
nop

encrypted_function:
<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>
<encrypted code>

(c
tx

 0
)

En
cr

yp
te

d
(c

tx
 1

)

HOST 2016 -16
DJW 5/5/16

Caches

Execution Registers

Main
Memory

Registers

0

1
0
1

ctx

Decryptctx

1

ctx 0

ctx 1

ctx 2

ctx n

ctx

Decrypt1
NULL context
has no keys

key0: ffda392cfbb
key1:285ffcd897d

How It Works

If the encrypted context attempts to access the caller’s state (in the other
window) by executing a “restore” instruction, the window shifts…

1

<encrypted code>

restore

mov 1, %l0
wr %l0, %asr31
call encrypted_function
nop

encrypted_function:
<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>
<encrypted code>

(c
tx

 0
)

En
cr

yp
te

d
(c

tx
 1

) <decrypted code>

HOST 2016 -17
DJW 5/5/16

Caches

Execution Registers

Main
Memory

Registers

0

1
0
1

ctx

Decryptctx

1

ctx 0

ctx 1

ctx 2

ctx n

ctx

Decrypt1
NULL context
has no keys

key0: ffda392cfbb
key1:285ffcd897d

How It Works

…and forcibly changes the ctx back to 0, and thus turning off decryption of the
code, resulting in a garbage code fetch

1

<encrypted code>

<decrypted code>

<GARBAGE>

mov 1, %l0
wr %l0, %asr31
call encrypted_function
nop

encrypted_function:
<encrypted code>
<encrypted code>
<encrypted code>
<encrypted code>
<restore>
<encrypted code>

(c
tx

 0
)

En
cr

yp
te

d
(c

tx
 1

)

HOST 2016 -18
DJW 5/5/16

• Fully synthesizable System-On-Chip
• High-assurance Suite-B key management
• Tightly coupled but differently encrypted code streams
• Encrypted, relocatable libraries locked to specific instances of

the processor
• High-speed decryption of code and data

– For AES-128: Little to no performance hit (XOR in the data path)
– For AES-256: 2 cycles of latency at the start of a missed instruction

stream
– No penalty for cache hits

Processor Features

HOST 2016 -19
DJW 5/5/16

• The processor is not side-channel resistant (currently by
choice)
– Differential Power Analysis
– Cache timing side-channel

• The data-cache scheme involves changing data under an XOR
mask

• Code and data streams currently have no integrity protection
– Code and data can be read in from AES-GCM encrypted flows, but

they are AES-CTR mode encrypted when executing

Vulnerabilities (not exhaustive)

HOST 2016 -20
DJW 5/5/16

• We show a novel embedded processor
that protects data-in-use by making
cryptographic operations intrinsic to
processor execution

• The processor enables:
– Progressive security gradations
– Security level specified by the application

writer
– Full encryption and masking of code and

data
– Different code/data keys within a single

code stream
– Relocatable encrypted libraries

Summary

This work builds toward a holistic approach to data protection that considers
the entire data life-cycle

HOST 2016 -21
DJW 5/5/16

© 2016 Massachusetts Institute of Technology.

Delivered to the US Government with Unlimited Rights, as defined in
DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any
copyright notice, U.S. Government rights in this work are defined by
DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of
this work other than as specifically authorized by the U.S. Government
may violate any copyrights that exist in this work.

