Outline

Introduction

State-of-the-art Forensic Methods
— OS level
— Hypervisorlevel

Hardware-based Workload Forensics
— Process Reconstruction

Experimental Results

— Setup
— Result & Overhead

Summary

Introduction

 Motivation

— Vast amount of sensitive information is stored,
processed and communicated in electronic form

— Intensified malicious efforts
- unauthorized access

— Retroactive investigation needed

4

* Workload Forensics
— Collect data related to past execution of computer programs

— Analyze data to understand and/or reconstruct
corresponding events

Outline

Introduction

State-of-the-art Forensic Methods
— OS level
— Hypervisorlevel

Hardware-based Workload Forensics
— Process Reconstruction

Experimental Results

— Setup
— Result & Overhead

Summary

OS-level Forensic Methods

 Forensic module resides at the same level
with applications/OS kernel

» Signature comparison
— Memory image app. app.
— Commercial products (i.e. EnCase, FTK, etc.) 'M

* Program behavior modeling app.
— System call pattern

— Involve machine learning/statistics

While OS-level Forensic methods benefit from semantic-rich information,
they are vulnerable to software attacks at the same level!

C. Kolbitsch, et al. “Effective and efficient malware detection at the end,” USENIX, 2009 4

Hypervisor-level Forensic Methods

Forensic module resides at Hypervisor level

* Hypervisor .
_ Virtualization for OS Hypervisor
— Isolated management core provides OS 0S
better security 'Forensics
 Bridge semantic gap 0S

— Process - dedicated addr. space & page table
— Page table base addr. (CR3 in x86) = process

Similar methods as at OS-level can be performed

Hypervisor-level Forensic methods are immune to OS-level attacks.
Unfortunately, the hypervisor itself can be the attack surface!

*D. Perez-Botero et al. “Characterizing hypervisor vulnerabilities in cloud computing servers,” SCC, 2013 5

Outline

Introduction

State-of-the-art Forensic Methods
— OS level
— Hypervisorlevel

Hardware-based \Workload Forensics
— Process Reconstruction

Experimental Results

— Setup
— Result & Overhead

Summary

Why Hardware-based Forensics?

user analysis
environment environment

T

software £EEESah

analysis
module

Download

h
ardware Jata bus

logging
module

A logging module at hardware level is expected to be immune to
Software-based tampering!

Process Reconstruction — Challenge

* Three main questions:

Data in HW - [.D.? Data in HW - behavior?

©e

Analysis in SW - distinguish different processes?

Logging Module — Logging Object

|[dentifier of
the process

e e
| CR3 value ' Phase 1
N

Behavior of the process

 Why TLB profile?
— CR3 change - TLB flush
— Accurate association

between TLB events and
CR3 value

— Mitigation of the effect
of different program
execution order

T. Sherwood et al. “Discovering and exploiting program phases,” IEEE Micro, 2003

Logging Module — Feature Extraction

CR3 value

Instruction 1
Instruction 2

Instruction 100

Instruction 1
Instruction 2

Instruction 100

10

Logging Module — Feature Extraction

CR3 value

Instruction 1 N
Instruction 2 update feature vector for each partition

 Operator counters
i |
Ve

"' I-I-IIII-ll

' 6-class operators

Instruction 100

Instruction 1
Instruction 2

Instruction 100

:_1) Data manipulation operator
1 2) Stack manipulation operator
I 3) Arithmetic/logic calculation
I4) Control flow operation

:5 |/O operation

 6) Floating point operation

N N’ S’

11

Logging Module — Feature Extraction

CR3 value
Instruction 1
Instruction 2 update feature vector for each partition
Operator counters ~ Operand counters |
Instruction 100 / | N / | \
™ Y A N

Instruction 1
Instruction 2

. 6-class operators 12-class operands ;

Instruction 100

_________________ e o - -
:-1) Data manipulation operator I | ' 1-8) General purpose registers :
1 2) Stack manipulation operator : 19) Memory reference |
13) Arithmetic/logic calculation |10)XMM registers/Floating point stack 1
'4) Control flow operation I 111) All segment registers l
5) /0 operation | 112) Immediate value }
 6) Floating point operation l T T T T T T T T T T T T T T T,

Logging Module — Feature Extraction

CR3 value final feature vector list attached to this CR3
Instruction 1
Instruction 2 update feature vector for each partition
‘Operator counters Operand counters
- i | | i
Instruction 100 / \ / \
IIIIII IIIIIIIIIIII

SsEEsen & ' 6-class operators 12-class operands

Instruction 2

Instruction 100

_________________ L - —
:-1) Data manipulation operator I | ' 1-8) General purpose registers :
1 2) Stack manipulation operator : 1 9) Memory reference |
13) Arithmetic/logic calculation |10)XMM registers/Floating point stack 1
'4) Control flow operation I 111) All segment registers |
:5) /O operation | 112) Immediate value :
 6) Floating point operation | Sm = s

Processes

Feature Vector

Sample '
Sample 2
Sample }

Sample !

v Feature Matrix

Analysis Module

14

Processes

Feature Vector

v Feature Matrix

Analysis Module

unseen , Seen
process | process

S

Processes

Analysis Module

Feature Vector

v Feature Matrix

Sample 2

Samples
Samp|e4

- .

?

unseen , Seen
process | process

" 4
o

n

process 1 process 2 processn

16

Processes

Analysis Module

Feature Vector
'S Prob. estimates
G
-
v Feature Matrix . Q
unseen , Sseen Support Vector Machine

process | process

" 4
o

/1\

process 1 process 2 process n k-Nearest Neighbors
(KNN)

17

Outline

Introduction

State-of-the-art Forensic Methods
— OS level
— Hypervisorlevel

Hardware-based Workload Forensics
— Process Reconstruction

Experimental Results

— Setup
— Result & Overhead

Summary

18

Experimental Setup

Simulator

— Simics 4.86

Target Platform

— 32-bit x86 with single Intel Pentium 4 core, 2Ghz
- 4GB RAM

Simulated Operating System (OS)

— Minimum installation Ubuntu server (Linux 2.6 kernel)
Workload Benchmark

— Mibench

— 50% training, 50% validation

Analysis Software

— Matlab

19

Results — Outlier Detection

BFPrate BMFN rate

14%

—
N
=S

—
o
X

8%

6%

4%

2% |

0%

Outlier Detection Accuracy

test 1 test 2 test 3 test 4 average

Test

* FP: seen process classified as unseen
* FN: unseen process classified as seen

20

Results — Outlier Detection

BFPrate BMFN rate

14%

—
N
=S

—
o
X

8%

6%

4% |

2% |

0%

Outlier Detection Accuracy

test 1 test 2 test 3 test 4 average

Test

* FP: seen process classified as unseen

* FN: unseen process classified as seen
« Average FP rate: 12.31%; average FN rate: 5.13%

A

Results — Workload Classification

100%

(0]
E
S~

60%

40% |

20%

Classification Accuracy

0%

KNN SVM
» Average classification accuracy: 96.97% for kNN and 96.93% for SVM

22

Results — Workload Classification

EKNN ®ESVM

100%
>
(&)
(S
5 80%
&)
&)
< 60% |
C
o
w— 40%
©
O
= 20% f
/p]
7p)
T
© s S ’5® S

® Q ‘1} ® ~c, (\ fb
& % &fo) L &3‘6\ 0&\ S) (b&o) (b&b
benchmark

 Classification accuracy for some classesreaches 100%

23

Results — Workload Classification

BkKNN = SVM

100%
>
(@)
C
5 80%
@)
@)
< 60% ¢}
cC
@)
= 40%
(qv]
O
= 20% t “
(7))
(7))
S ou
O ’bé(\ "1, 0_, Q;\g\ 6\0

© i & @ & & >
% % &fo B L &3‘@ 0@@\ R) (b&o) (b&b
benchmark

 Classification accuracy for some classesreaches 100%

« rawcaudio (ADPCM encoding algorithm) = rawdaudio (decoding

algorithm) = reduced classification efficiency due to similarity
24

Logging Overhead

« Steps to compute logging overhead:

Instruction 1

Feature Vector Size = 18 X [log, partitionsize] Instruction 2

= HEEN

ITLB miss rate

Instruction 100

Partition generationrate = ”r ,
partition,size

bits per instruction = Feature Vector sizeXPartition generation rate

bits per instruction Xclock frequency
CPI (assumed = 1)

esitimated logging rate(bits/second) =

25

Logging Overhead

« Steps to compute logging overhead:

Instruction 1

Feature Vector Size = 18 X [log, partitionsize] Instruction 2

= HEEN

ITLB miss rate

Instruction 100

Partition generationrate = ”r ,
partition,size

bits per instruction = Feature Vector sizeXPartition generation rate

bits per instruction Xclock frequency
CPI (assumed = 1)

esitimated logging rate(bits/second) =

« Computation result:
— Average iTLB miss rate for user space instructions is 0.0016%
— This leads to an estimated logging rate of only 5.17 KB/s

26

Outline

Introduction

State-of-the-art Forensic Methods
— OS level
— Hypervisor level

Hardware-based Workload Forensics
— Process Reconstruction

Experimental Results

— Setup
— Result & Overhead

Summary

27

Summary

Contributions

— First hardware-based method for workload forensics analysis

— Addresses the weakness of OS-level/hypervisor-level methods
— Demonstrates process reconstruction feasibility via TLB profiling

Implementation
— Complete Hardware-to-Software logging-analysis flow

Results
— High workload-classification accuracy
— Low logging overhead

Future Work

— Investigate information theoretic content of other features
— Experiment with more advanced machine learning models

28

