
Outline

• Introduction

• State-of-the-art Forensic Methods
– OS level
– Hypervisor level 

• Hardware-based Workload Forensics
– Process Reconstruction

• Experimental Results
– Setup
– Result & Overhead

• Summary
1



Introduction

• Motivation
– Vast amount of sensitive information is stored, 

processed and communicated in electronic form
– Intensified malicious efforts
à unauthorized access

– Retroactive investigation needed

2

• Workload Forensics
– Collect data related to past execution of computer programs
– Analyze data to understand and/or reconstruct 

corresponding events



Outline

• Introduction

• State-of-the-art Forensic Methods
– OS level
– Hypervisor level 

• Hardware-based Workload Forensics
– Process Reconstruction

• Experimental Results
– Setup
– Result & Overhead

• Summary
3



OS-level Forensic Methods

• Forensic module resides at the same level 
with applications/OS kernel

• Signature comparison
– Memory image
– Commercial products (i.e. EnCase, FTK, etc.)

• Program behavior modeling
– System call pattern
– Involve machine learning/statistics

While OS-level Forensic methods benefit from semantic-rich information, 
they are vulnerable to software attacks at the same level!

4

OS

app. app.

app.
Forensics

C. Kolbitsch, et al. “Effective and efficient malware detection at the end,” USENIX, 2009



Hypervisor-level Forensic Methods

• Forensic module resides at Hypervisor level
• Hypervisor 

– Virtualization for OS
– Isolated management core provides

better security
• Bridge semantic gap

– Process à dedicated addr. space & page table
– Page table base addr. (CR3 in x86) à process

• Similar methods as at OS-level can be performed

Hypervisor

OS OS

OS

Forensics

Hypervisor-level Forensic methods are immune to OS-level attacks. 
Unfortunately, the hypervisor itself can be the attack surface!

*D. Perez-Botero et al. “Characterizing hypervisor vulnerabilities in cloud computing servers,” SCC, 2013 5



Outline

• Introduction

• State-of-the-art Forensic Methods
– OS level
– Hypervisor level 

• Hardware-based Workload Forensics
– Process Reconstruction

• Experimental Results
– Setup
– Result & Overhead

• Summary
6



Why Hardware-based Forensics?

A logging module at hardware level is expected to be immune to 
software-based tampering!

7

software

hardware Download	
data	bus

Upload	
data	bus

user	
environment

analysis	
environment

logging	
module

analysis	
module



Process Reconstruction – Challenge

8

• Three main questions:

process

Data in HW à I.D.? Data in HW à behavior?

Analysis in SW à distinguish different processes?



Logging Module – Logging Object

• Why TLB profile?
– CR3 change à TLB flush
– Accurate association 

between TLB events and 
CR3 value

– Mitigation of the effect 
of different program 
execution order

User-space instruction 
raising iTLB miss

Phase 1

Phase 1

Phase 2

Phase 2

Phase 3

Phase 3

Behavior of the process

CR3 value

Identifier of 
the process

T. Sherwood et al. “Discovering and exploiting program phases,” IEEE Micro, 2003 9



Logging Module – Feature Extraction

10

CR3	value
Instruction	1
Instruction	2
…...
…...
Instruction	100

Instruction	1
Instruction	2
…...
…...
Instruction	100

噯



Operator	counters

update	feature	vector	for	each	partition

6-class	operators

Logging Module – Feature Extraction

1) Data manipulation operator
2) Stack manipulation operator
3) Arithmetic/logic calculation
4) Control flow operation
5) I/O operation
6) Floating point operation 11

CR3	value
Instruction	1
Instruction	2
…...
…...
Instruction	100

Instruction	1
Instruction	2
…...
…...
Instruction	100

噯



Operand	counters

12-class	operands

Operator	counters

update	feature	vector	for	each	partition

6-class	operators

Logging Module – Feature Extraction

1) Data manipulation operator
2) Stack manipulation operator
3) Arithmetic/logic calculation
4) Control flow operation
5) I/O operation
6) Floating point operation

1-8) General purpose registers
9) Memory reference
10) XMM registers/Floating point stack
11) All segment registers 
12) Immediate value

12

CR3	value
Instruction	1
Instruction	2
…...
…...
Instruction	100

Instruction	1
Instruction	2
…...
…...
Instruction	100

噯



Operand	counters

12-class	operands

Operator	counters

update	feature	vector	for	each	partition

6-class	operators

Logging Module – Feature Extraction

1) Data manipulation operator
2) Stack manipulation operator
3) Arithmetic/logic calculation
4) Control flow operation
5) I/O operation
6) Floating point operation

1-8) General purpose registers
9) Memory reference
10) XMM registers/Floating point stack
11) All segment registers 
12) Immediate value

13

CR3	value
Instruction	1
Instruction	2
…...
…...
Instruction	100

Instruction	1
Instruction	2
…...
…...
Instruction	100

噯

final	feature	vector	list	attached	to	this	CR3

F.V.	1	
F.V.	2
…...
…...
F.V.	end



Analysis Module
Sample	1 Feature	1 Feature	2 Feature	...

Sample	2 Feature	1 Feature	2 Feature	...

Sample	3 Feature	1 Feature	2 Feature	...

Sample	4 Feature	1 Feature	2 Feature	...

Feature Vector

14

Pr
oc

es
se

s

Feature Matrix



Analysis Module

？

Sample	1 Feature	1 Feature	2 Feature	...

Sample	2 Feature	1 Feature	2 Feature	...

Sample	3 Feature	1 Feature	2 Feature	...

Sample	4 Feature	1 Feature	2 Feature	...

Feature Vector

unseen
process

15

Pr
oc

es
se

s

Feature Matrix

seen
process



Analysis Module

？

？

Sample	1 Feature	1 Feature	2 Feature	...

Sample	2 Feature	1 Feature	2 Feature	...

Sample	3 Feature	1 Feature	2 Feature	...

Sample	4 Feature	1 Feature	2 Feature	...

Feature Vector

process 1 process 2 process n

unseen
process

16

Pr
oc

es
se

s

Feature Matrix

seen
process



Analysis Module

k-Nearest Neighbors
(kNN) 

Support Vector Machine
(SVM)

？

？

Sample	1 Feature	1 Feature	2 Feature	...

Sample	2 Feature	1 Feature	2 Feature	...

Sample	3 Feature	1 Feature	2 Feature	...

Sample	4 Feature	1 Feature	2 Feature	...

Feature Vector

process 1 process 2 process n

unseen
process

17

Pr
oc

es
se

s

Feature Matrix

seen
process

Prob. estimates



Outline

• Introduction

• State-of-the-art Forensic Methods
– OS level
– Hypervisor level 

• Hardware-based Workload Forensics
– Process Reconstruction

• Experimental Results
– Setup
– Result & Overhead

• Summary
18



Experimental Setup

• Simulator
– Simics 4.86

• Target Platform
– 32-bit x86 with single Intel Pentium 4 core, 2Ghz
– 4GB RAM

• Simulated Operating System (OS)
– Minimum installation Ubuntu server (Linux 2.6 kernel)

• Workload Benchmark
– Mibench
– 50% training, 50% validation

• Analysis Software
– Matlab

19



Results – Outlier Detection

0%

2%

4%

6%

8%

10%

12%

14%

test 1 test 2 test 3 test 4 averageO
ut

lie
r D

et
ec

tio
n 

Ac
cu

ra
cy

Test

FP rate FN rate

• FP: seen process classified as unseen
• FN: unseen process classified as seen

20



Results – Outlier Detection

0%

2%

4%

6%

8%

10%

12%

14%

test 1 test 2 test 3 test 4 averageO
ut

lie
r D

et
ec

tio
n 

Ac
cu

ra
cy

Test

FP rate FN rate

• FP: seen process classified as unseen
• FN: unseen process classified as seen
• Average FP rate: 12.31%; average FN rate: 5.13%

21



Results – Workload Classification

0%

20%

40%

60%

80%

100%

kNN SVM

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

• Average classification accuracy: 96.97% for kNN and 96.93% for SVM

22



Results – Workload Classification

0%

20%

40%

60%

80%

100%

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

benchmark

kNN SVM

• Classification accuracy for some classes reaches 100%

23



Results – Workload Classification

0%

20%

40%

60%

80%

100%

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

benchmark

kNN SVM

• Classification accuracy for some classes reaches 100%
• rawcaudio (ADPCM encoding algorithm) ⊇ rawdaudio (decoding 

algorithm) à reduced classification efficiency due to similarity
24



Logging Overhead

𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝑉𝑒𝑐𝑡𝑜𝑟	𝑆𝑖𝑧𝑒 = 18	×	 log5𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛↓𝑠𝑖𝑧𝑒

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒 = 	
𝑖𝑇𝐿𝐵	𝑚𝑖𝑠𝑠	𝑟𝑎𝑡𝑒
𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛↓𝑠𝑖𝑧𝑒

𝑏𝑖𝑡𝑠	𝑝𝑒𝑟	𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝑉𝑒𝑐𝑡𝑜𝑟	𝑠𝑖𝑧𝑒×𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒

𝑒𝑠𝑖𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑎𝑡𝑒(𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑) = 	
𝑏𝑖𝑡𝑠	𝑝𝑒𝑟	𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛	×𝑐𝑙𝑜𝑐𝑘	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐶𝑃𝐼	(𝑎𝑠𝑠𝑢𝑚𝑒𝑑 = 1)

• Steps to compute logging overhead:
Instruction	1
Instruction	2
…...
…...
Instruction	100

25



Logging Overhead

• Computation result:
– Average iTLB miss rate for user space instructions is 0.0016%
– This leads to an estimated logging rate of only 5.17 KB/s

𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝑉𝑒𝑐𝑡𝑜𝑟	𝑆𝑖𝑧𝑒 = 18	×	 log5𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛↓𝑠𝑖𝑧𝑒

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒 = 	
𝑖𝑇𝐿𝐵	𝑚𝑖𝑠𝑠	𝑟𝑎𝑡𝑒
𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛↓𝑠𝑖𝑧𝑒

𝑏𝑖𝑡𝑠	𝑝𝑒𝑟	𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝑉𝑒𝑐𝑡𝑜𝑟	𝑠𝑖𝑧𝑒×𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒

𝑒𝑠𝑖𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑙𝑜𝑔𝑔𝑖𝑛𝑔	𝑟𝑎𝑡𝑒(𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑) = 	
𝑏𝑖𝑡𝑠	𝑝𝑒𝑟	𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛	×𝑐𝑙𝑜𝑐𝑘	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐶𝑃𝐼	(𝑎𝑠𝑠𝑢𝑚𝑒𝑑 = 1)

• Steps to compute logging overhead:
Instruction	1
Instruction	2
…...
…...
Instruction	100

26



Outline

• Introduction

• State-of-the-art Forensic Methods
– OS level
– Hypervisor level 

• Hardware-based Workload Forensics
– Process Reconstruction

• Experimental Results
– Setup
– Result & Overhead

• Summary
27



Summary
• Contributions

– First hardware-based method for workload forensics analysis
– Addresses the weakness of OS-level/hypervisor-level methods
– Demonstrates process reconstruction feasibility via TLB profiling

• Implementation
– Complete Hardware-to-Software logging-analysis flow

• Results
– High workload-classification accuracy
– Low logging overhead

• Future Work
– Investigate information theoretic content of other features
– Experiment with more advanced machine learning models

28


