
A New Approach for Rowhammer Attacks

Rui Qiao, Stony Brook University
Mark Seaborn, Google Inc.



“Rowhammer”: A DRAM Bug

2

Repeated row activations (memory accesses) can 
cause bit flips in adjacent rows

[REF] Yoongu Kim et al, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors”, ISCA 2014



A single cell

Dynamic Random-Access Memory (DRAM)

3

capacitor

transistor

Row Buffer

Row 0

Row 1
Row 2

Row 3
Row 4

DRAM bank

Cell



Background: Rowhammer

Row Buffer

Aggressor Row

Victim Row

Victim Row
Bit flips in locations 
that are NOT accessed



Background: Rowhammer
• Why?

• Electromagnetic disturbance (hypothesis)
• Adjacent DRAM rows discharge at an accelerated rate

• State change before next refresh => bit flip!
• When?

• From 2010 onwards
• Sub 40 nm process for DDR3
• Larger capacity: fit larger amount of cells into the chip

• Smaller cells, less charge
• Closer cells, more interference



Trigger Rowhammer Programmatically

Rowhammer requires repeated DRAM accesses 
(row activations), but cache can prevent DRAM 
accesses!

DRAM

Cache

Execution Unit

CPU

6

The key: bypass cache

CLFLUSH on x86

• Flush cache line so that DRAM has to be 
accessed



Bit Flips are Exploitable!

• Two exploits
• Privilege escalation
• Chrome Native Client (NaCl) sandbox escape

• NaCl background
• Securely run (untrusted) native code on the web

• Key exploit technique
• Single bit flip changes read-only, control flow constraining code

7

[REF] Mark Seaborn and Thomas Dullien, “Exploiting the DRAM rowhammer bug 
to gain kernel privileges”, BlackHat 2015



Rowhammer Defenses
• Error-Correcting Code (ECC)

• Can mitigate rowhammer
• Expensive: mostly used by servers
• Limited detection/correction if there are multiple bit flips

• Target Row Refresh (TRR)
• Idea: identify “hot” rows and refresh their neighbors
• Not in DDR3/DDR4 standard

• Current mitigations: 2X refresh rate
• Mitigates rowhammer, but no guarantee
• Requires BIOS update: unlikely to be performed by end users

• Other proposed approaches
• Performance counters, Probabilistic Adjacent Row Activation (PARA) ...

8



NaCl’s Mitigation
• Observation

• Rowhammer requires CLFLUSH

• Mitigation
• Disallow CLFLUSH

• Question:
• Other ways to trigger rowhammer? 

9



The Key for Rowhammer: Bypass Cache!

Normal memory accesses are cached
Non-temporal mem. accesses are NOT cached

Cache

normal mem. 
accesses

CPU

DRAM

Execution Unit

non-temp. 
memory 
accesses

10

Examples:
movnti %rax, (%rbx) // 8 bytes
movntq %mm0, (%rbx) // 16 bytes
movntdq %xmm0, (%rbx) // 32 bytes
...

Data expected to be used only once
no need to bring to cache
avoid cache pollution

Non-temporal instructions (x86)



Rowhammer with Non-temporal Instructions

• Non-temporal reads are not feasible
• Special memory type required 

(memory mapped IO)

11

CPU

DRAM

Execution Unit

Write-combining 
buffer

WR(X, V1), WR(X, V2), …... WR(X, Vn) => WR(X, 
Vn)

• Challenge for non-temporal writes
• Write-Combining buffers
• Delays/Combines WRITE



Rowhammer with Non-temporal Writes

12

movnti %eax, (X)
mov %eax, (X)

Approach: flush write-combining buffer



MOVNT-based Rowhammer Exploit

• Chrome Native Client sandbox escape
• Adapted from original CLFLUSH-based exploit

• Differences
• Bit flips by (non-temporal) memory writes, instead of (CLFLUSH plus) 

memory reads
• More about the challenges and solutions in paper!

MOVNT is disallowed in latest NaCl implementation



MOVNT Instructions are Widely Used!

• Found in multimedia software, compilers, window managers, 
OS kernels ... 
• More often than CLFLUSH

• MOVNT is used in the C library
• In memset(3) and memcpy(3)
• To reduce cache pollution

• If rowhammer can be triggered by only calling
memset/memcpy, almost all software can do rowhammer!

14



Rowhammer with memset(3) and memcpy(3)

• memset(addr, value, size)
• Both MOV and MOVNT-based implementations
• MOVNT is only executed when size > threshold

• Cache pollution prevention only needed for large data copy
• Challenge:

• We need memset(... large_size) to execute MOVNT
• memset(... large_size) takes time, slows down row activations

• Rowhammer requires 140K row activations per 64 ms



Rowhammer with memset(3) and memcpy(3)

C library Newlib uClibc Bionic 
(Android)

Glibc musl dietlibc

used in
memset/memcpy

Y Y Y Y N N

MOVNT execution
threshold size

256
bytes

120K
bytes

128K
bytes

~700K
bytes

N/A N/A

rowhammer-ready Y N N N N/A N/A

MOVNT in libc implementations



Security Implications

• Untrusted software
• Only forbidding CLFLUSH is not enough

• Benign software
• Likely to contain MOVNT
• If malicious input can influence software to execute MOVNT in certain 

ways => remote rowhammer attacks



One more thing …





Thanks!



Backup slides



Original Rowhammer Approach (x86)

code1a:
mov (X), %eax // Read from addr X 
mov (Y), %ebx // Read from addr Y 
clflush (X) // Flush cache for addr X 
clflush (Y) // Flush cache for addr Y 
jmp code1a

Repeated row activations can cause bit flips in adjacent rows
22

DRAM accesses

Row 7
Row 6
Row 5
Row 4
Row 3
Row 2
Row 1
Row 0

Row Buffer



Address Selection for Rowhammer
Address selection: “same bank different rows”
Challenge: needs two mappings

23

Virtual address

Physical address

DRAM location
Bank #, row # ...

/proc/pid/pagemap

Memory controller; 
not documented

probabilistic approach: 
Select two random virtual addresses
8 banks in total => 1/8 chance to satisfy “SBDR”

1/8 chance to satisfy “Same Bank”
A bank has many (e.g., 2^15) rows => “Same Bank Same Row” negligible



Rowhammer with Non-temporal Writes

24

// This is NOT sufficient 
// for rowhammer!

code2a:
movnti %eax, (X)
movnti %eax, (Y)
jmp code2a

// This CAN do rowhammer!

code2b:
movnti %eax, (X)
mov %eax, (X)
movnti %eax, (Y)
mov %eax (Y)
jmp code2b

Approach: flush write-combining buffer



Exploit: NaCl Sandbox Escape
How the exploit works

andl $~31, %eax // make address in %eax 32 bytes aligned
addq %r15, %rax // add base register r15; limit %rax to some address space area
jmp *%rax => jmp *%rcx // the unconstrained register rcx is used!

25

• Control flow sandboxing escape => arbitrary code execution
• Insight: a single bit flip has changed validated, read-only code!
• 13% of bit flips are usable
• The above code is “sprayed” in the NaCl process

• Very likely bit flips will land on it!



Getting Bit Flips: How “Hard” to “Hammer”?

• How fast?
• At most 500 ns between two row activations

• How many times?
• At least 139K row activations

• Refresh rate
• DDR3 Standard: DRAM rows need to be refreshed every 64 ms

26


