Round Gating for Low Energy Block Ciphers

Subhadeep Banik, Andrey Bogdanov

DTU Compute, Technical University of Denmark, Lyngby, Denmark

Francesco Regazzoni

ALARI, University of Lugano, Switzerland

Takanori Isobe, Harunaga Hiwatari, Toru Akishita

Sony Corporation, Japan

IEEE HOST 2016

McLean, VA

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

- Preliminaries
- AES-128: A Case Study
- CMOS Energy Consumption Model
- Round Gating
- Conclusion

Preliminaries Lightweight Block Ciphers

State of the Art

- Numerous block ciphers since AES
- E.g.: Present, TWINE, Piccolo, KATAN, Prince. Simon/Speck, ...
- Low area and low power designs widely studied
- \bullet Low energy \Rightarrow largely unexplored
- Kerckhof et al (CHES 2012), Batina et al (RFIDSec 2013)

Preliminaries Power vs Energy

Power and Energy

- Both are important lightweight design metrics
- Power is the rate of energy consumption
- Energy is the time integral of power

$$E = \int_t P \ dt$$

 \bullet Energy \Rightarrow total electric work done by the system

Tradeoffs

- Designing for low power/energy can be quite different
- Example: serial architectures for block ciphers
- In general, lower hardware area implies lower power consumption
- \bullet More cycles per encryption \Rightarrow energy optimality NOT guaranteed

AES-128: A Case Study Effect of Frequency

Frequency Dependence

•
$$P_{dyn} \propto Freq \Rightarrow P_{dyn} = \frac{CONST}{T} \Rightarrow E_{dyn} = P_{dyn}T = CONST$$

• $E_{stat} = \int_T P_{stat} dt$

Figure: Energy consumption for round-based AES-128 vs Clock frequency

Not Surprising

• Clock Frequency: For low leakage process, not a factor at sufficiently high frequencies (upto $f_{max} = \frac{1}{\tau}$).

• Same conclusion reached by Kerckchoff at al. (CHES 2012)

5 DTU Compute

AES-128: A Case Study Energy Consumption: Case Study AES-128

Observation

• Serialization/Unrolling: Round-based designs are clearly best

#	Design	Area(in GE)	#Cycles	Energy	Energy/bit	
				(pJ)	(pJ)	
1	8-bit	2722.0	226	1913.1	14.94	
2	32-bit (A_1)	4069.7	94	1123.3	8.77	
	32-bit (A ₂)	4061.8	54	819.2	6.40	
	32-bit (A ₃) 5528.4		44	801.7	6.26	
3	64-bit (B_1)	6380.9	52	1018.7	7.96	
	64-bit (B ₂)	6362.6	6362.6 32		6.79	
	64-bit (B ₃)	64-bit (B_3) 7747.5		616.2	4.81	
4	Round based 12459.0		11	350.7	2.74	
5	2-round	22842.3	6	593.6	4.64	
6	3-round	32731.9	5	1043.0	8.15	
7	4-round	43641.1	4	1416.5	11.07	
8	5-round	53998.7	3	1634.4	12.77	
9	10-round	101216.7	1	2129.5	16.64	

Table: Area and energy figures for different AES-128 architectures

- Two major sources of power in CMOS circuits:
 - Dynamic dissipation due to the charging and discharging of load capacitances.
 - Static dissipation due to leakage current and other current drawn continuously from the power supply.
- \bullet In a given time interval, if the cell makes n transitions, then

Observation

$$E_{dyn} = E \cdot n = \left(\frac{1}{2}C_L V_{DD}^2 + E_{int}\right) \cdot n$$

CMOS Energy Consumption Model Case Study: Two Rijndael S-Boxes

				Total Time Range: 199742 - 204426 Page 1 of 1
#	Desig.	Signal	Value	Time: 199742 - 204426 X 1PS (C1: 2017812REF)
		Group 1		, , 200000 , , , , , 201000 , , , , , 202000 , , , , , 203000 , , , , , , 204000
130		Group 1		
001	Sim	S1xD [7:0]	8'hbb	70) bb
002	Sim	S2xD [7:0]	8'hea	51 () () () () (65) () (65) () () ea
003	Sim	S3xD [7:0]	8'h87	
				0 τ_d $2\tau_s$

CMOS Energy Consumption Model Case Study: *n* Rijndael S-Boxes

• If we place n Rijndael S-Boxes sequentially: E_1, E_2, E_3, \ldots is an arithmetic sequence.

Figure: Actual and Predicted Energy consumptions per cycle E_i

DTU

÷

Figure: Block Cipher Architecture

Energy consumptions

- Energy consumed in each of the RF_i and RK_i blocks is in arithmetic progression.
- If there are R rounds in the algorithm, encryption in $1 + \left\lceil \frac{R}{r} \right\rceil$ rounds.

Total Energy per encryption

• Energy consumption per encryption: shown in Banik et al. (SAC 2015)

$$\mathbf{E}_r = E_r \cdot \left(1 + \left\lceil \frac{R}{r} \right\rceil\right) = (Ar^2 + Br + C) \cdot \left(1 + \left\lceil \frac{R}{r} \right\rceil\right)$$

- For "light" round functions like PRESENT, TWINE, SIMON, MIDORI r = 2 is the optimal configuration
- For "heavy" round functions like AES, LED, PICCOLO, NOEKEON r = 1 is optimal

${\rm Tradeoff} \, \, {\rm on} \, \, r$

- Suitable value of r ?
- $\bullet \ {\sf High} \ r$
 - Low latency: Critical in e.g. memory encryption
 - Lower energy required to update registers
 - More energy in later rounds due to compounding switching activity

\bullet Low r

- Lower energy consumed per cycle
- Avoids compounding switching activity in later rounds
- High latency!

Round Gating The Idea of Round Gating

- \bullet For high r (unrolled designs): compounding switching of transient signals across round functions
- Primarily responsible for high energy consumption.
- What if transients are limited to one round?
- The idea is to present the output of RF_i to the input of RF_{i+1} only when the signal has stabilized
- Can lead to substantial energy savings for unrolled low-latency designs!

Round Gating The Idea of Round Gating

- Construct a delay unit with delay $au_D > au_{RF}$ i.e. the delay in round function.
- The ENABLE signal is transmitted through a chain of delay units.
- The AND gate is active only when ENABLE is High after τ_D seconds.
- RF_{i+1} gets input only when output of RF_i has become stable.

Round Gating Implementation

- The EN_i signals are constructed by a network of OR gates.
- The delay units made of buffers.

Round Gating Snapshot for Unrolled AES Circuit (10 Rounds)

Total Time Range 599038 - 630110 x 1ps					Total Time Range 598181 - 655504 x 1ps					
#	Desig	; Signal		#	Desiş	: Signal	, 1600000, 1610000, 1620000, 1630000, 1640000, 165000			
001	Sim	InsDI[127.0]	12 ba41 c6/8 11d4 /884 dha 7c5b 9021 5d1c	001	Sim	IncDi[127.0]	12 ba41 c6f8 11d4 f884 dtta 7c5b 9021 5dtc			
000	Sim	CT1xD[127.0]	759 33899 7ed4 42b2 fx39 5b74 e55b ck03 0b46	002	Sim	Eout1xD[127:0]	159 10000 3x69 7e44 4252 fx39 5b74 e55b cb03 0b46			
003	Sim	CT2xD[127:0]	177 aa83 461a 1556 c292 875f 2d5d 1b33 bo4c	003	Sim	Eout2xD[127:0]	1777 10000 0000 111 aa83 461a f558 c292 875f 245d 1033 loc4c			
004	Sim	CT3xD[127:0]	"62e 8f91 5121 cc00 70fe 6ac9 7bbe cf5a 02ae	004	Sim	Eout3xD[127:0]	1620 1000 0000 0000 0000 1000 8191 5121 cc00 70fe 6ac9 7kbe cf5a 02ae			
003	Sim	CT4xD[127:0]	"teff 78b2 x0bx 0860 cf12 dxb6 b406 c317 fe03	005	Sim	Eout4xD[127:0]	1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/			
008	Sim	CT5xD[127:0]	"3133 25de a748 4e4e 180e 5892 b13: 9fb1 945:	006	Sim	Eout5xD[127:0]	1733 100 0000 0000 0000 0000 0000 1000 25de s7x8 4e4e f50e 5892 b13c 9fbf 945c			
007	Sim	C76xD[127:0]	16899 2005 e13c 7e30 31 d5 fed4 19ad 9a3d 94a0	007	Sim	Eout5xD[127:0]	1999 0000 0000 0000 0000 0000 0000 0000			
000	Sim	C17xD[127:0]	* 419c	000	Sim	Eout7xD[127:0]	*19c 0000 0000 0000 0000 0000 0000 0000 0			
005	Sim	C18xD[127:0]	** 4b61	009	Sim	Eout8xD[127:0]	7561 📕 (0000 0000 0000 0000 0000 0000 0000			
010	Sim	CT9xD[127:0]	1e e895	010	Sim	Eout8xD[127:0]	*885 0000 0000 0000 0000 0000 0000 0000			
011	Sim	OutxD0[127:0]	15 fc1x	011	Sim	OutxD0[127:0]	1c1x 3800 0000 3800 0000 3800 0000 3800 0000 3800 0000			
F					-					
L										

- Waveforms for the fully unrolled AES-128 circuit (normal and roundgated)
- The waveforms listed are the output signals of each successive round function
- With round gating, compounding of switching is prevented

Round Gating Experimental Results for $1 \le r \le 4$

Figure: Normal and Round Gated Energy consumptions

Round Gating Experimental Results for $1 \le r \le 4$

Figure: Normal and Round Gated Energy consumptions

Round Gating **Experimental Results for** $1 \le r \le 4$

Figure: Normal and Round Gated Energy consumptions

Round Gating Conclusions

${\rm Tradeoff} \, \, {\rm on} \, \, r$

- For lower degrees of unrolling ($1 \le r \le 4$):
 - Round gating not always beneficial
 - The round gating circuit itself consumes some energy
 - For ciphers like **PRESENT** incremental switching is negligible
 - Hence round gating does more harm than good
- For higher degrees of unrolling/ fully unrolled designs
 - Round gating is always beneficial
 - \bullet Huge energy savings (over 60 %) with only minimal additional hardware
 - Latency approximately doubles

Round Gating Comparison of fully unrolled circuits for various ciphers

#	Cipher	Blocksize/	Area(GE)		Total Energy (pJ)			Latency (ns)		
		Keysize	Normal	Round gated	% Change	Normal	Round gated	% Change	Normal	Round gated
1	AES-128	128/128	101217	105931	+4.7%	2129.5	707.7	-66.8%	28.5	54.3
2	Noekeon	128/128	24538	27113	+10.5%	3631.2	650.0	-82.1%	35.5	57.7
3	Midori128	128/128	21647	24109	+11.4%	1760.1	328.5	-81.3%	18.8	37.9
4	Midori64	64/128	8416	9612	+14.2%	563.1	168.9	-70.0%	14.4	30.9
5	LED 128	64/128	47257	52161	+10.4%	13526.5	705.8	-94.8%	121.3	229.3
6	Prince	64/128	7729	8567	+10.8%	369.5	137.3	-62.8%	11.5	22.0
7	Present	64/80	16036	20596	+28.4%	982.8	261.4	-73.4%	20.2	43.8
8	Piccolo	64/80	16132	18707	+16.0%	2617.7	350.7	-86.6%	45.1	88.0
9	Twine	64/80	15399	21260	+38.1%	1987.3	294.6	-85.2%	43.1	75.6
10	Simon 64/96	64/96	18403	25568	+38.9%	1459.9	282.0	-80.7%	15.6	37.8

Round Gating Energy reduction for fully unrolled circuits

Comparative Energy Reduction for fully unrolled implementation

Conclusion Some Inferences

Energy optimality

- \bullet Signal delay across round \Rightarrow more switching activity in later rounds
- \bullet So, r=1,2 usually the optimal energy configuration
- However higher r may be required in specific applications (eg. low delay memory encryption)
- Simpler round functions tend to have smaller signal delay
- Eg: Present, TWINE, Simon 64/96
- For low r, round gating does not improve energy performance

For fully unrolled ciphers

- Round gating is highly effective
- Substantial energy savings with minimal hardware overhead

THANK YOU