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Preliminaries
Lightweight Block Ciphers

State of the Art

• Numerous block ciphers since AES

• E.g.: Present, TWINE, Piccolo, KATAN, Prince. Simon/Speck, ...

• Low area and low power designs widely studied

• Low energy ⇒ largely unexplored

• Kerckhof et al (CHES 2012), Batina et al (RFIDSec 2013)
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Preliminaries
Power vs Energy

Power and Energy

• Both are important lightweight design metrics

• Power is the rate of energy consumption

• Energy is the time integral of power

E =
∫
t

P dt

• Energy ⇒ total electric work done by the system

Tradeoffs

• Designing for low power/energy can be quite different

• Example: serial architectures for block ciphers

• In general, lower hardware area implies lower power consumption

• More cycles per encryption ⇒ energy optimality NOT guaranteed
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AES-128: A Case Study
Effect of Frequency
Frequency Dependence
• Pdyn ∝ Freq ⇒ Pdyn = CONST

T ⇒ Edyn = PdynT = CONST
• Estat =

∫
T
Pstat dt
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Figure: Energy consumption for round-based AES-128 vs Clock frequency

Not Surprising
• Clock Frequency: For low leakage process, not a factor at sufficiently high
frequencies (upto fmax = 1

τcr
).

• Same conclusion reached by Kerckchoff at al. (CHES 2012)
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AES-128: A Case Study
Energy Consumption: Case Study AES-128

Observation
• Serialization/Unrolling: Round-based designs are clearly best

# Design Area(in GE) #Cycles Energy Energy/bit
(pJ) (pJ)

1 8-bit 2722.0 226 1913.1 14.94
2 32-bit (A1) 4069.7 94 1123.3 8.77

32-bit (A2) 4061.8 54 819.2 6.40
32-bit (A3) 5528.4 44 801.7 6.26

3 64-bit (B1) 6380.9 52 1018.7 7.96
64-bit (B2) 6362.6 32 869.8 6.79
64-bit (B3) 7747.5 22 616.2 4.81

4 Round based 12459.0 11 350.7 2.74
5 2-round 22842.3 6 593.6 4.64
6 3-round 32731.9 5 1043.0 8.15
7 4-round 43641.1 4 1416.5 11.07
8 5-round 53998.7 3 1634.4 12.77
9 10-round 101216.7 1 2129.5 16.64

Table: Area and energy figures for different AES-128 architectures
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CMOS Energy Consumption Model
Energy in CMOS gates

• Two major sources of power in CMOS circuits:

• Dynamic dissipation due to the charging and discharging of load capacitances.

• Static dissipation due to leakage current and other current drawn continuously from the power supply.

• In a given time interval, if the cell makes n transitions, then

Observation

Edyn = E · n =
(1

2
CLV 2

DD + Eint

)
· n
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CMOS Energy Consumption Model
Case Study: Two Rijndael S-Boxes

S1xD S2xD S3xD

S1 S2
b b b

0 τd 2τd

Total Time Range: 199742 - 204426 Page 1 of 1

# Desig. Signal Value Time: 199742 - 204426 X 1PS (C1: 2017812REF)

200000 201000 202000 203000 204000

SG Group 1

001 Sim S1xD [7:0] 8′hbb 70 bb

002 Sim S2xD [7:0] 8′hea 51 e5 65 ea

003 Sim S3xD [7:0] 8′h87 d1 6d ba 87
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CMOS Energy Consumption Model
Case Study: n Rijndael S-Boxes
• If we place n Rijndael S-Boxes sequentially: E1, E2, E3, . . . is an arithmetic
sequence.
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Figure: Actual and Predicted Energy consumptions per cycle Ei
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CMOS Energy Consumption Model
Energy Model: Iterated Block Ciphers

b b b b b b b

b b b b b b b

Plaintext

Key
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RK1 RK2 RKr

K1 K2 Kr

Figure: Block Cipher Architecture

Energy consumptions

• Energy consumed in each of the RFi and RKi blocks is in arithmetic progression.

• If there are R rounds in the algorithm, encryption in 1 +
⌈
R
r

⌉
rounds.
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CMOS Energy Consumption Model
Energy Model: Iterated Block Ciphers

Total Energy per encryption

• Energy consumption per encryption: shown in Banik et al. (SAC 2015)

Er = Er ·
(

1 +
⌈

R

r

⌉)
= (Ar2 + Br + C) ·

(
1 +
⌈

R

r

⌉)
• For ”light" round functions like PRESENT, TWINE, SIMON, MIDORI r = 2 is
the optimal configuration

• For “heavy" round functions like AES, LED, PICCOLO, NOEKEON r = 1 is
optimal
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CMOS Energy Consumption Model
Block Ciphers: Best Energy Configuration

Tradeoff on r

• Suitable value of r ?

• High r
• Low latency: Critical in e.g. memory encryption
• Lower energy required to update registers
• More energy in later rounds due to compounding switching activity

• Low r

• Lower energy consumed per cycle
• Avoids compounding switching activity in later rounds
• High latency!
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Round Gating
The Idea of Round Gating

Round Gating

• For high r (unrolled designs): compounding switching of transient signals across
round functions

• Primarily responsible for high energy consumption.

• What if transients are limited to one round?

• The idea is to present the output of RFi to the input of RFi+1 only when the
signal has stabilized

• Can lead to substantial energy savings for unrolled low-latency designs!
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Round Gating
The Idea of Round Gating

b b b b b

b b b b b
ENABLE

Delay Unit

τRF

τD τD > τRF

Register

Round
Function

Round
Function

Round
Function

EN2 EN3 ENr

Round Gating

• Construct a delay unit with delay τD > τRF i.e. the delay in round function.

• The ENABLE signal is transmitted through a chain of delay units.

• The AND gate is active only when ENABLE is High after τD seconds.

• RFi+1 gets input only when output of RFi has become stable.
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Round Gating
Implementation

CLOCK

D(CLOCK)

D2(CLOCK)

EN2CLOCK

D(CLOCK)

EN3CLOCK

D2(CLOCK)

τCLK

τD τD

Round Gating

• The ENi signals are constructed by a network of OR gates.

• The delay units made of buffers.
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Round Gating
Snapshot for Unrolled AES Circuit (10 Rounds)

Total Time Range 599038 - 630110 x 1ps Total Time Range 598181 - 655504 x 1ps

# Desig. Signal# Desig. Signal

Round Gating

• Waveforms for the fully unrolled AES-128 circuit (normal and roundgated)

• The waveforms listed are the output signals of each successive round function

• With round gating, compounding of switching is prevented
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Round Gating
Experimental Results for 1 ≤ r ≤ 4
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(a) Present
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(b) TWINE
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Figure: Normal and Round Gated Energy consumptions
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Round Gating
Experimental Results for 1 ≤ r ≤ 4
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(a) Piccolo
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(b) LED 128
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Figure: Normal and Round Gated Energy consumptions
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Round Gating
Experimental Results for 1 ≤ r ≤ 4
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(a) AES-128
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(b) Midori 128
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Figure: Normal and Round Gated Energy consumptions
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Round Gating
Conclusions

Tradeoff on r

• For lower degrees of unrolling (1 ≤ r ≤ 4):

• Round gating not always beneficial
• The round gating circuit itself consumes some energy
• For ciphers like PRESENT incremental switching is negligible
• Hence round gating does more harm than good

• For higher degrees of unrolling/ fully unrolled designs

• Round gating is always beneficial
• Huge energy savings (over 60 %) with only minimal additional hardware
• Latency approximately doubles
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Round Gating
Comparison of fully unrolled circuits for various ciphers

# Cipher Blocksize/ Area(GE) Total Energy (pJ) Latency (ns)
Keysize Normal Round gated % Change Normal Round gated % Change Normal Round gated

1 AES-128 128/128 101217 105931 +4.7% 2129.5 707.7 -66.8% 28.5 54.3
2 Noekeon 128/128 24538 27113 +10.5% 3631.2 650.0 -82.1% 35.5 57.7
3 Midori128 128/128 21647 24109 +11.4% 1760.1 328.5 -81.3% 18.8 37.9
4 Midori64 64/128 8416 9612 +14.2% 563.1 168.9 -70.0% 14.4 30.9
5 LED 128 64/128 47257 52161 +10.4% 13526.5 705.8 -94.8% 121.3 229.3
6 Prince 64/128 7729 8567 +10.8% 369.5 137.3 -62.8% 11.5 22.0
7 Present 64/80 16036 20596 +28.4% 982.8 261.4 -73.4% 20.2 43.8
8 Piccolo 64/80 16132 18707 +16.0% 2617.7 350.7 -86.6% 45.1 88.0
9 Twine 64/80 15399 21260 +38.1% 1987.3 294.6 -85.2% 43.1 75.6
10 Simon 64/96 64/96 18403 25568 +38.9% 1459.9 282.0 -80.7% 15.6 37.8
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Round Gating
Energy reduction for fully unrolled circuits
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Conclusion
Some Inferences

Energy optimality
• Signal delay across round ⇒ more switching activity in later rounds
• So, r = 1, 2 usually the optimal energy configuration
• However higher r may be required in specific applications (eg. low delay memory
encryption)
• Simpler round functions tend to have smaller signal delay
• Eg: Present, TWINE, Simon 64/96
• For low r, round gating does not improve energy performance

For fully unrolled ciphers
• Round gating is highly effective
• Substantial energy savings with minimal hardware overhead
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