
Controlling	Your	Control	Flow	Graph

Arun	Kanuparthi,	Jeyavijayan	Rajendran†,	Ramesh	Karri‡
Intel	Corporation,	The	University	of	Texas	at	Dallas†,	New	York	University‡

Disclaimer

The views expressed in this presentation solely belong to the
authors and do not in anyway reflect the views of Intel
Corporation. The countermeasures described here were
implemented in experimental hardware (implemented using
cycle accurate simulators) and software environments. The
authors of this article have not explored the potential
applicability of these countermeasures to commercially available
hardware and software.

Outline

• Introduction
• Motivation	&	Threat	Model
• Dynamic	Sequence	Checking	(DSC)
• Architecting	DSC
• Evaluation
• Security	Analysis
• Summary

Introduction

• Attackers	steal	sensitive	
data	such	as	bank	account	
numbers,	passwords,	SSN,	
medical	records,	etc.	

• With	the	increase	in	the	
number	of	smart	devices,	
the	number	of	cyber	
attacks	is	on	the	rise

Problem is only getting worse!

Motivation	– For	Attackers

Bug	bounties	and	black	markets	offer	premium	money	for	vulnerabilities
Attackers	may	also	choose	to	exploit	vulnerabilities	 themselves

Motivation- Incidents

• Heart bleed (2014)
• Target attack (2013)
• Security vulnerabilities in iPhone (2011)
• Sony PlayStation Network hack (2011)
• Medical records stolen in Utah (2011)
• US Department of Defense incident (2008)

Incidents

0

25000000

50000000

75000000

100000000

2010 2011 2012 2013 2014 2015 2016 2017

Y-Values

Code	Reuse	Attacks

Binary Assembly code

f7	c7	07	00	00	00 test	$0x00000007,	(%edi)

0f	95	45	c3 setnzb -61(%ebp)

Binary Assembly code

c7	07	00	00	00	0f movl $0x0f000000,	 (%edi)

95	45	c3 xchg %ebp,	%eax

45 inc %ebp

c3 ret

Starting	one	byte	later:

Example	code:

Example	of	Return	Oriented	Programming

Example	attack

Motivation	– For	Defenders

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Program	
Shepherding

CFI ROPdefender DTPM IPR ILR

Cyber threat actors continue to exploit vulnerable software to conduct
attacks. Asmany as 85 percent of targeted attacks are preventable.*

*http://www.publicsafety.gc.ca/cnt/ntnl-scrt/cbr-scrt/tp-strtgs-eng.aspx

Threat	Model
• Goal	of	the	attacker:	Tamper	

with	program	execution	and/or	
obtain	protected	information

• Attacker	can:
– Tamper	with	the	external	

buses	(arrows	1	and	3)
– Modify	 the	contents	of	disk	

and	DRAM	(arrow	2)
• Attacker	cannot:

– Observe	the	internal	states	of	
the	processor

– Tamper	with	the	interconnects	
internal	to	the	processor

Chip	Boundary

Cores

M
em

or
y	

Co
nt
ro
lle
r

South	
Bridge

TPM

Disk

DR
AM

Attacks on DRAM
and disk

Attacks on bus

Attacks on bus

Attacks on
LPC bus

2

2

1

1 3

Dynamic	Sequence	Checking	(DSC)

• Key	Ideas
–What:	
• Verify	validity	of	control	flow	between	basic	blocks

– How:	
• Assign	unique	codes	to	every	basic	block	in	the	
program	at	compile	time	such	that	Hamming	distance	
between	any	two	legally	connected	blocks	is	a	known	
constant
• Verify	the	Hamming	distance	source	basic	block	and	
destination	basic	block	at	runtime

Why	DSC	works
Benchmark Basic	

Blocks	(N)
Possible	
transitions
(E’)	x	106

Actual	
transitions	

(E)

%	Actual
transitions	(%E)

400.Perlbench 20149 202.98 29111 0.0143

401.bzip2 2508 3.14 3008 0.0956

403.Gcc 51224 1311.92 68142 0.0052

462.Libquantum 1648 1.35 2037 0.1501

482.Xalancbmk 24165 291.96 31266 0.0107

003.Clustalw 2554 3.26 2920 0.0896

006.Phylip 1745 1.52 2124 0.1396

STREAM 1248 0.77 1473 0.1893

DSC	Design	Flow

• Size	of	Hamming	Code:
– 𝑆 = max 𝐶,𝑃, 𝑐𝑒𝑖𝑙 𝑙𝑜𝑔𝑁 + 1

• Determination	of	Hamming	distance
– 𝐻𝐷	ɛ	(1,	ceil(HD/2))

• Match	Control	Flow	Graph	with	
Hamming	distance	graph
– Use	Karp	Sisper graph	matching	algorithm

Characteristics	of	children	and	parents	
in	benchmarks

Benchmark Children Parents ceil	(log N)

400.Perlbench 27 24 15

401.bzip2 7 9 12

403.Gcc 37 31 16

462.Libquantum 9 9 11

482.Xalancbmk 19 22 15

003.Clustalw 6 8 12

006.Phylip 8 9 11

STREAM 3 3 11

Algorithm	for	assigning	unique	codes

Assigning	unique	codes	to	basic	blocks

(a)	CFG	‘G’

(b)	HDG	1,	‘H’ (c)	Matching

(d)	Result

DSC	Microarchitecture

Experimental	Setup
Parameter Specification
Core 2 GHz

L1-I$,	D$ 32	KB 4-way,	4	cycles

L2	 8	cycles

L3 20	cycles

Main Memory	 round	 trip	latency 50	cycles

SHA-3	Hash	Engine 12	cycles

Comparator 1	cycle

Hash Cache 64	KB	8-way,	6	cycles

Hamming	Distance	calculation 1	cycle

HD	stack

Shadow stack

Benchmarks SPEC	CPU2006, BioBench,	
STREAM

Results

Benchmark Code	Size	
(bits)

Hamming	
Distance	(HD)

Storage	(G	
+	H) in	MB

Storage	
(codes)	in	KB

400.Perlbench 28 2 64 68.75

401.bzip2 13 2 8 4

403.Gcc 38 2 112 237.5

462.Libquantum 12 2 2 2.5

482.Xalancbmk 23 2 56 67

003.Clustalw 13 2 8 4

006.Phylip 12 2 2 2.5

STREAM 12 2 2 1.8

Results

Performance	Impact	of	DSC

0

1

2

3

4

5

6

7

Pe
rf
or
m
an

ce
	O
ve
rh
ea
d	
(%

)

DIC	Only DSC	+	DIC

4.7%

Resiliency	of	DSC	against	ROP	gadgets

Benchmark ret	
instructions

Unintended	
ret	

instructions

Gadgets
thwarted

%	detected

400.Perlbench 3292 1915 51/51 100

401.bzip2 971 549 34/34 100

403.Gcc 6794 4668 60/60 100

462.Libquantum 1006 554 44/44 100

482.Xalancbmk 17495 10213 68/68 100

003.Clustalw 1258 631 46/46 100

006.Phylip 1921 871 42/42 100

STREAM 779 324 28/28 100

Security	Analysis
• DSC	can	protect	against

– Control	transfer	to	the	middle	of	an	instruction
• No	unique	code	to	block	in	the	middle	of	instruction

– Control	transfer	to	the	middle	of	a	basic	block
• No	unique	code	to	the	block	in	the	middle	of	basic	block

– Code	reuse	attacks	using	return/	jump
• Hamming	distance	does	not	match

– Indirect	jumps/	branches
• Hamming	distance	does	not	match

– Indirect	Calls
• Hamming	distance	does	not	match

• Limitations	of	DSC
– Attacker	redirects	code	to	basic	blocks	with	similar	Hamming	

distance

Conclusion

• Microarchitecture	support	to	ensure	control-
flow	integrity

• Hamming-distance	based	approach	to	thwart	
code	reuse	attacks

• All	gadgets	identified	by	ROPgadget for	
various	benchmarks	have	been	detected	

• Very	low	performance	overhead	(4.7%)

Thank	You

BACKUP

