LEDPUF: Stability-Guaranteed Physical Unclonable Functions through Locally Enhanced Defectivity

Wei-Che Wang, Prof. Puneet Gupta
Dr. Yair Yona, and Prof. Suhas Diggavi
UCLA Electrical Engineering

## Limitations of Silicon PUFs

- Stability
- Environmental fluctuations
- Measurement noise

- Uniquenes
- Randomne
- Routing co




## Locally Enhanced Hard Defectivity (LED)

- Hard defectivity
- Permanent defectivity


## Stable!

- No parametric variations
- Locally enhanced randomness
- No impact (from hard defectivity) to other parts of the chip
- Through physical design
- Compatible with circuit design flow

Unique!

## Directed Self Assembly

## - Directed Self Assembly (DSA)

- Promising patterning candidate for <7nm
- Block copolymer phase separation


[Tseng10]

- Guiding template interaction



## Minimum Energy State

- One of the minimum energy states is reached


Template width $\sim \mathrm{L}_{0}$


Template width >> $\mathrm{L}_{0}$

[Kim03]

## ITRS Roadmap

Table 1: Key targets and challenges for implementation of new patterning options.

| Next-generation technology | First possible use in mfg | Feature type | Device type | Key challenges | Required date for decision making |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Multiple patterning extension | 2019 | Sub-I0-nm hp fins in finFETs | '5-nm' node logic | - Printing and overlay of cut levels <br> - Cost due to many masks | 2017 |
| EUV | $\begin{aligned} & 2017 \\ & 2018 \end{aligned}$ | 22 nm to 26 nm hp CH /cut levels 16 nm to 20 nm hp LS | ' $10=n m$ ' node logic extension, ' 7 -nm' node logic, 19-nm DRAM | - Enough throughput <br> - Defects from mask <br> - Resist sensitivity and roughness | 2015 |
| Nanoimprint | 2016 | 14-nm hp LS | Flash memory | - Detectivity <br> - Overlay <br> - Throughput | 2015 |
| DSA (for pitch multiplication) | $\begin{aligned} & 2017 \\ & 2018 \end{aligned}$ | Contact holes/ cut levels | DRAM logic | - Template infrastructure <br> - Detectivity <br> - Pattern placement <br> - Design | 2015 |
| Maskless <br> lithography (ML) | 2018 | Contact holes/ cut levels | '7-nm' node logic | - Throughput <br> - Demonstrated <br> - Multibeam tool | 2016 |

## DSA Randomness Extraction

- With a large guiding template, random interactions begin to dominate the assembly process

- The guiding shape is designed so that two vias are connected with certain probability



## Simulation Result

- $3 \times 500$ simulations
- zero: 53.73\%
- one: 46.26\%
- Bits are independent


$$
P(x)=0
$$



## Stable Signal Unit

- A Stable Signal Unit (SSU) is constructed from a pair of DSA vias and two transistors
- When EVA. is high
- DSA defective connection is formed $\rightarrow$ Output is VDD (logic one)
- DSA defective connection is not formed $\rightarrow$ Output is GND (logic zero)



## Weak LEDPUF

- A weak LEDPUF is constructed by arranging SSUs in arrays
- Challenge: $\log (n)$ bits
- Response: $m$ bits
- Compared with SRAM PUF
- More resistant to attacks
- Completely stable



## Strong LEDPUF

- A strong LEDPUF is composed of HMAC-SHA-256 and keys from a weak LEDPUF
- Completely stable requirement for the cryptographic hash
- 2x256 bits from the stable weak LEDPUF (Initial Vectors)
- Challenge: any number of bits
- Response: 256 bits
- Compared with an Arbiter PUF
- No efficient attacks to cryptographic hash functions
- Completely stable



## Weak LEDPUF Stability Requirement

- A single bit-flip in the weak LEDPUF will cause a complete different strong LEDPUF response
- The intra-distance of a strong LEDPUF grows dramatically as the weak LEDPUF intra-distance increases



## Uniqueness Evaluation

- 1000 weak/strong LEDPUFs are simulated
- Inter-distances are close to ideal 50\%

|  | Response Bits | Mean | Standard Deviation |
| :--- | ---: | ---: | ---: |
| Weak LEDPUF | 512 | $50.3 \%$ | $2 \%$ |
| Strong LEDPUF | 256 | $50.0 \%$ | $3 \%$ |




## Conclusion and Future Work

- The first stability-guaranteed PUF is proposed
- Weak LEDPUF
- Strong LEDPUF
- Randomness extraction from locally enhanced DSA process
- Our future work includes
- Finding sources of LED that are
- More secure than DSA
- More compatible with existing CMOS technology
- Developing a quantitative security analysis of stable/unstable PUF


## Thank you!

## Questions?

## Backup Slides

## Imaging Attack

- Cross section image ineffective because it destroys neighboring SSUs
- Top down image could be prevented by using a "tall" guiding template



Top down view

Cross section view

## Guess Work Analysis

- Probability mass function of a bit from 1500 DSA connections

$$
p_{X}(1)=0.4626 \quad p_{X}(0)=0.5374
$$

- Single round guessing attack
- min-entropy $H_{\text {min }}(X)=-\log _{2}\left(\max _{i} p_{i}\right)=0.8962$
- For a m-bit response, the success rate of a single guessing is $2^{-0.8962 m}$
- With $m=512$ bits, the success rate is $\sim 0 \%$
- Dictionary guessing attack
- Multiple guesses from the most probable response
- Shannon-entropy $H_{S h}(x)=\sum_{i}-P_{i} \log _{2}\left(p_{i}\right)=0.996$
- Number of expected attempts is lower-bounded by
$E\{G\} \geq \frac{1}{4} 2^{m H_{S h}(x)}=\frac{1}{4} 2^{0.996 m}$
- With $\mathrm{m}=512$ bits, the expected attempts becomes unfeasibly large!


## Guess Work Growth Rate

- Renyi entropy:

$$
\lim _{m \rightarrow \infty} \frac{1}{m} \log _{2} E\{G\}=H_{1 / 2}(X)=2 \cdot \log _{2}\left(\sum_{i} p_{i}^{1 / 2}\right)=0.998
$$

- $E\{G\}$ is upper bounded by $2^{0.998 m}$ for a m-bit response
- 1.002 m bits of LEDPUF $=\mathbf{m}$ bits fair coin tosses

