

LEDPUF: Stability-Guaranteed Physical Unclonable Functions through Locally Enhanced Defectivity

<u>Wei-Che Wang</u>, Prof. Puneet Gupta Dr. Yair Yona, and Prof. Suhas Diggavi UCLA Electrical Engineering

Limitations of Silicon PUFs

Locally Enhanced Hard Defectivity (LED)

Stable!

• Hard defectivity

- Permanent defectivity
- No parametric variations

- Locally enhanced randomness
 - No impact (from hard defectivity) to other parts of the chip
 - Through physical design
 - Compatible with circuit design flow

Directed Self Assembly

Directed Self Assembly (DSA)

- Promising patterning candidate for <7nm
- Block copolymer phase separation
 B
 B
 C
 Thermal annealing
 Transation
 Thermal annealing
 Transation
 Transati
 - Guiding template interaction

Minimum Energy State

One of the minimum energy states is reached

[Kim03]

ITRS Roadmap

Table 1: Key targets and challenges for implementation of new patterning options.

Next-generation technology	First possible use in mfg	Feature type	Device type	Key challenges	Required date for decision making
Multiple patterning extension	2019	Sub-l0-nm hp fins in finFETs	'5-nm' node logic	 Printing and overlay of cut levels Cost due to many masks 	2017
EUV	2017 2018	22 nm to 26 nm hp CH/cut levels 16 nm to 20 nm hp LS	'10=nm' node logic extension, '7-nm' node logic, 19-nm DRAM	 Enough throughput Defects from mask Resist sensitivity and roughness 	2015
Nanoimprint	2016	14-nm hp LS	Flash memory	– Detectivity – Overlay – Throughput	2015
DSA (for pitch multiplication)	2017 2018	Contact holes/ cut levels	DRAM logic	– Template infrastructure – Detectivity – Pattern placement – Design	2015
Maskless lithography (ML)	2018	Contact holes/ cut levels	'7-nm' node logic	– Throughput – Demonstrated – Multibeam tool	2016

DSA Randomness Extraction

• With a large guiding template, random interactions begin to dominate the assembly process

The guiding shape is designed so that two vias are connected with certain probability

Simulation Result

- 3x500 simulations
 - zero: 53.73%
 - one: 46.26%
- Bits are independent

Stable Signal Unit

- A Stable Signal Unit (SSU) is constructed from a pair of DSA vias and two transistors
- When EVA. is high
 - DSA defective connection is formed \rightarrow Output is VDD (logic one)
 - DSA defective connection is not formed \rightarrow Output is GND (logic zero)

Weak LEDPUF

- A weak LEDPUF is constructed by arranging SSUs in arrays
 - Challenge: log(n) bits
 - **Response:** *m* bits
- Compared with SRAM PUF
 - More resistant to attacks
 - Completely stable

Strong LEDPUF

- A strong LEDPUF is composed of HMAC-SHA-256 and keys from a weak LEDPUF
 - Completely stable requirement for the cryptographic hash
 - 2x256 bits from the stable weak LEDPUF (Initial Vectors)
 - Challenge: any number of bits
 - Response: 256 bits
- Compared with an Arbiter PUF
 - No efficient attacks to cryptographic hash functions
 - Completely stable

Weak LEDPUF Stability Requirement

A single bit-flip in the weak
 LEDPUF will cause a complete
 different strong LEDPUF response

 The intra-distance of a strong LEDPUF grows dramatically as the weak LEDPUF intra-distance increases

Uniqueness Evaluation

- 1000 weak/strong LEDPUFs are simulated
- Inter-distances are close to ideal **50%**

	Response Bits	Mean	Standard Deviation
Weak LEDPUF	512	50.3%	2%
Strong LEDPUF	256	50.0%	3%

Conclusion and Future Work

The first stability-guaranteed PUF is proposed

- Weak LEDPUF
- Strong LEDPUF
- Randomness extraction from locally enhanced DSA process

Our future work includes

- Finding sources of LED that are
 - More secure than DSA
 - More **compatible** with existing CMOS technology
- Developing a quantitative security analysis of stable/unstable PUF

Thank you! Questions?

Backup Slides

Imaging Attack

- Cross section image ineffective because it destroys neighboring SSUs
- Top down image could be prevented by using a "tall" guiding template

Guess Work Analysis

- Probability mass function of a bit from 1500 DSA connections $p_X(1) = 0.4626$ $p_X(0) = 0.5374$
- Single round guessing attack
 - min-entropy $H_{\min}(X) = -\log_2\left(\max_i p_i\right) = 0.8962$
 - For a m-bit response, the success rate of a single guessing is $2^{-0.8962m}$
 - With m=512 bits, the success rate is $\sim 0\%$

• Dictionary guessing attack

- Multiple guesses from the most probable response
- Shannon-entropy $H_{Sh}(x) = \sum_{i} -P_i \log_2(p_i) = 0.996$
- Number of expected attempts is lower-bounded by

$$E\{G\} \ge \frac{1}{4}2^{mH_{Sh}(x)} = \frac{1}{4}2^{0.996m}$$

With m=512 bits, the expected attempts becomes unfeasibly large!

Guess Work Growth Rate

• Renyi entropy:

$$\lim_{m \to \infty} \frac{1}{m} \log_2 E\left\{G\right\} = H_{1/2}\left(X\right) = 2 \cdot \log_2\left(\sum_i p_i^{1/2}\right) = 0.998$$

- $E \{G\}$ is upper bounded by $2^{0.998m}$ for a m-bit response
- 1.002m bits of LEDPUF = m bits fair coin tosses