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Physical Unclonable Functions (PUFs)

= PUFs are circuits which create secrets from complex physical system
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Machine Learning Attack on Strong PUFs

= Attack model *
e Attacker in temporary possession of PUF - Mine CRPs
e Attacker can observe CRPs during authentication

= Create software model > PUF cloned !!
Arbiter PUF modeled with Support Vector Machine**
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* Lee et.al, VLSI symposium 2004 ** U. Ruhrmair et al., ACM CCS, 2010 4



Problem Statement

= Many of proposed Strong PUFs have been cloned using ML attacks
* What learning can circuit designers get from ML studies ?

= (Can a stand-alone Strong PUF be built without security enhancing
accessories ? E.g. Hash

= Not a new PUF design
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Background — ML Resistant PUFs

= Arbiter PUF

Switch

~
.
. Pid
S, Ll
S .
PgS
PN
o .
o .
”

CO Cl C63

| 1/0

Arbiter Output

e Linear additive model - Attacked using Support Vector Machine (SVM)

= |ncrease non-linearity to increase ML resistance

= Digital Modifications to Arbiter PUF

« XOR PUF, Light-weight PUFs, Feed-forward PUF - All attacked
successfully *
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* U. Ruhrmair et al., "Modeling Attacks on Physical Unclonable Functions”, ACM CCS, 2010
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Analog PUFs — Increase ML resistance

Non-linear VTC
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= Analog PUFs based on
= non-linear current sources [*]

= non-linear Voltage Transfer
Characteristics (VTC) PUF [**]

= These two works show promise in
building ML resistant strong PUFs

= ~80% SVM ML prediction for 100K
CRPs (20% error)



Issues in Analog PUFs

= Verified only against SVM. Many other classes of ML possible

= Checked only an instance of the PUF
ML resistance varies in each PUF

Name Type Security/ Comments
Arbiter PUF, XOR PUF, Digital Attacked using Logistic
Lightweight PUF & Regression
Feed-forward PUF Digital Attacked using Evolutlonary
Strategies
Non-linear VTC PUF, Non-
linear current PUF, SCA Analog Resistant against SVM only
PUF

= We still don’t know how ML-resistant Strong PUFs are !
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ML Study — Overview of our methodology

1. Build abstract model PUF

 PUFs are based on delay, voltage, current - can we extract any useful

abstraction?

2. Study functions for ML resistance
e Can we gain general understanding of how to increase the modeling-

attack resistance ?

3. Test using meta-ensemble ML techniques

* Boosting and Bagging ML algorithm

4. Understand limitations of structure if any
 E.g., Is the cascaded switch architecture itself a limiting factor ?
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Abstract Model Building
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Function of Interest
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Tables represent abstraction of circuit transfer functions
 Represented as discrete function
How ML resistance increases with entropy ?

e Assume uniform distribution for the function

o Size of table —> Amount of entropy of PUF unit cell
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Study | — Increase in entropy

Model Accuracy (%)
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= QObservation 1: Increasing size of table increases ML resistance
* Higher the (persistent) entropy, higher the ML resistance

= QObservation 2: Given sufficient entropy, ML resistance is possible

= QObservation 3: Meta-ensemble algorithms are potent
e Boosting and Bagging perform far better than previous ML algorithms

o Gradient Boosting technique offer the best known attack
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Study Il - Impact of bias in function

100

-  Uniform
90} -== Gaussian |1

80+

---------------------------------------
-
‘---
.
2
.

Table size =16
70L—" ]

60}

Model accuracy (%)

50|
10 20 30 40 50 60 70 80 90 100
Number of CRPs for training x 1000

= Gradient Boosting ML attack

e Uniform vs (Truncated) Normal distribution

= Circuit functions with equiprobable outputs are

desirable for ML resistance
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Study Il - Impact of Digital Non-linearity
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Study IV — Boosting vs VTC PUF
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= VTC function output PDF plotted
e Bias in output value
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Performance of ML attacks

= Gradient boosting improves prediction accuracy
o 92% prediction rate in comparison to 80% using SVM*

[*] Vijayakumar et.al, DATE 2015
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Key Takeaways !

Non-linear functions increase the machine learning

resistance
 Non-monotonicity needed to prevent saturation in implementation

Composing non-linear functions using function composition

shows promise
e Can lead to systematic design approaches

Sufficient entropy from non-linear functions
e The switch architecture with function composition construction ensures
modeling-attack resistance

Bagging and Boosting algorithms are more potent than
traditional ML attacks on PUFs

 Creates new attack model

Given function satisfying the properties it is indeed possible

to build ML resistant PUF against known attacks
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Future PUF design directions

= How it helps PUF circuit designers ?

= Properties of the family of functions f;() identified through study
« Circuit designers can focus on implanting such function
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= Future work
e Circuit implementation of such functions
e Build silicon and test
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