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Oxide RRAM Basics

q “0” : High Resistance State (HRS)
q “1” : Low Resistance State (LRS)
q HRSàLRS: SET 
q LRSàHRS: RESET

Typical Bipolar I-V Curve
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RRAM’s Industry R&D 

Samsung HP & Hynix

Adesto

Panasonic Toshiba & Sandisk

Micron & SonyTSMC



Arizona State University

Emerging Device and Architecture Group6 RUI LIU

The Randomness in RRAM PUF

§ A small change in defect location significantly
changes the resistance due to electron tunneling
mechanism in HRS
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RRAM Device Characteristics from Experimental Data

Cell to Cell
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Cycle to Cycle
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RRAM Array: 1-transistor-1-resistor (1T1R) vs. 
Crossbar Architecture
1T1R architecture Crossbar architecture

RRAM

HRSLRS

LRS LRS Sneak 
path
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RRAM PUF Architecture for Key Generation

§ The red parts are designed
only for construction
phase (preparation phase)

§ The green part is designed
only for operation phase
(evaluation phase)
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 Array:128 X 8
              1T1R 

Read @ 0.15 V

1n

Distribution after 1st RESET

RRAM PUF Implementation in 1kb 1T1R Array

De
co
de

r 128	x	8
1T1R	arrayRRAM

	Cell

54.3 nm
9.1 nm

F

1) form all the cells to LRS
2) RESET all the cells to HRS 

(entropy source)
3) Read out the current
4) Find a split reference within 

the read current distribution
5) Digitize the randomness 

according to the reference [1]
(d)

Black: “1”/LRS    White: “0”/HRS
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Digital Data Pattern after Split (Fig. (b)) 

(c)
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Analog Current Distribution after First RESET Operation (Fig. (a)) 
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[1] W. Chen, et al, ICCAD, 2014
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Impacts on Uniqueness
Split Reference

(a)

Exp.

(b)

Split S/A Offset 

(d)
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Reliability 
§ RRAM device: resistance drifts over time but very slow

§ High temperature is used to accelerate the failure

§ Reliability of RRAM PUF requires an excellent data
retention even at elevated temperature conditions
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Strategies to Improve Uniqueness 

Uniqueness Ref_Split generated from Array No.
1st 2nd 3rd 4th 5th

µ(%)a 49.48 48.97 49.79 47.77 49.80
σ(%)b 4.90 5.06 4.87 5.56 4.86

§ Dummy array (1024 cells) is used to generate split reference

§ Dummy array is designed adjacent to the real array on-
chip (resulting in larger area overhead on chip)

§ Dummy array off-chip calibrated with the same batch
fabricated with the real array (no area overhead on chip)
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Strategies to Improve Uniqueness Con’t
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§ Minimizing Split S/A Offset

1) Symmetrical and common centroid layout 
design

2) Increasing the size the critical transistors, 
especially the differential input pair
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Multi-Cell-Per-Bit to Improve Reliability
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§ Redundancy cells are 
employed to minimize 
the probability of early 
lifetime failure due to 
cell to cell variation. 
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Layout Obfuscation for 
Tamper Resistance

§ Potential security issue

An adversary might be able 
to microprobe the S/A
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Layout Obfuscation for 
Tamper Resistance
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§ Potential security issue

An adversary might be able 
to microprobe the S/A

§ Layout Obfuscation 

Hide S/A within 1T1R array 
and randomize the locations

Fake and real RRAM cells 
uniformly fabricated on the top
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Area Cost and Performance Overhead Analysis Using 
Cadence and HSPICE

Architecture S/A hiding 
(w/ or w/o) Latency (ns) Energy (pJ) Area (mm2) *

1-cell-per-bit w/o 4.24 9.59 0.0083

8-cell-per-bit
w/o 6.46 14.87 0.0390

w/ 16.45 17.69 0.2036

*Including the peripheral circuits (e.g. row decoder, COL MUX, write driver and S/A)

§ Array size: 64x128(1024)

§ Circuit technology node: TSMC 65 nm
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Conclusion

§ Large variability of RRAM resistance in HRS was leveraged 
as a source of entropy for weak PUF application

§ The performance and reliability of RRAM weak PUF were 
evaluated experimentally on the 1kb 1T1R arrays

§ The factors that affect the RRAM weak PUF metrics were 
discussed and strategies were proposed to improve the 
performance and reliability

§ The potential security problem was discussed and layout 
obfuscation was proposed for tamper resistance
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Backup
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S/A sizing

Transistor Q1/Q2 Q3/Q4 Q5/Q6 Q7/Q8 Q9 Q10/Q11

Gate Length 
(nm) 60 60 60 180 60 60

Width (nm) 240 240 120 900 120 120

S/A TRANSISTORS’ SIZE TO REDUCE OFFSET σ  TO 7.858 MV

S/A TRANSISTORS’ SIZE TO REDUCE OFFSET σ  TO 6.511 MV

Transistor Q1/Q2 Q3/Q4 Q5/Q6 Q7/Q8 Q9 Q10/Q11

Gate Length 
(nm) 60 60 60 180 60 60

Width (nm) 240 240 120 1800 240 120
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Brief Comparison of Silicon PUFs

PUF Pros Cons Vulnerability

Delay based • Large # of CRPs
• Mature technology

Efforts for Place and Route Machine learning
attack

SRAM Mature technology Small # of CRPs Photon emission 
attack

STT-RAM

• Compact
• Low fabrication 

cost

• ~2x ON/OFF ratio
• Small variation in resistance

Invasive probing 
attack (possible 
but very hard)

PCRAM

Retention problem (aging effect)
Severity: PCRAM>RRAMRRAM
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RRAM Array: 1-transistor-1-resistor (1T1R) vs. 
Cross-point Architecture
1T1R architecture Crossbar architecture

RRAM

HRSLRS

LRS LRS


