

Tsinghua University

A Highly Reliable and Tamper-Resistant RRAM PUF: Design and Experimental Validation

<u>Rui Liu¹, Huaqiang Wu², Yachuan Pang², He Qian²</u> and Shimeng Yu¹ ¹Arizona State University, AZ, USA ²Tsinghua University, Beijing, CN

Email: rliu51@asu.edu

http://faculty.engineering.asu.edu/shimengyu/

School of Electrical, Computer and Energy Engineering (ECEE)
Arizona State University

- Introduction of RRAM
- RRAM PUF Architecture for Key Generation
- Performance Evaluation on 1kb RRAM arrays
- Strategies to Improve Performance and Reliability
- Area Cost and Performance Overhead Analysis
- Conclusion

Introduction of RRAM

- RRAM PUF Architecture for Key Generation
- Performance Evaluation on 1kb RRAM arrays
- Strategies to Improve Performance and Reliability
- Area Cost and Performance Overhead Analysis
- Conclusion

Oxide RRAM Basics

□ "1" : Low Resistance State (LRS)

 \Box HRS \rightarrow LRS: SET

LRS→HRS: RESET

RRAM's Industry R&D

Samsung

TSMC

32Gb

24nm x 24nm

130.7mm² NAND-

Compatible

2KB

40us

230us

Micron & Sony

Panasonic

RUI LIU

Toshiba & Sandisk

The Randomness in RRAM PUF

 A small change in defect location significantly changes the resistance due to electron tunneling mechanism in HRS

RRAM Device Characteristics from Experimental Data

RRAM device: TiN/TaOx/HfO₂/TiN

7

Introduction of RRAM

RRAM PUF Architecture for Key Generation

- Performance Evaluation on 1kb RRAM arrays
- Strategies to Improve Performance and Reliability
- Area Cost and Performance Overhead Analysis
- Conclusion

RRAM Array: 1-transistor-1-resistor (1T1R) vs. Crossbar Architecture

1T1R architecture

Crossbar architecture

RRAM PUF Architecture for Key Generation

 The red parts are designed only for construction phase (preparation phase)

 The green part is designed only for operation phase (evaluation phase)

RRAM PUF Implementation in 1kb

- form all the cells to LRS 1)
- **RESET all the cells to HRS** 2) (entropy source)
- Read out the current 3)
- Find a split reference within **4**) the read current distribution
- **Digitize the randomness** 5) according to the reference [1]

[1] W. Chen, et al, *ICCAD*, 2014

RUILIU

Emerging Device and Architecture Group

White: "0"/HRS

Black: "1"/LRS

- Introduction of RRAM
- RRAM PUF Architecture for Key Generation
- Performance Evaluation on 1kb RRAM arrays
- Strategies to Improve Performance and Reliability
- Area Cost and Performance Overhead Analysis
- Conclusion

Arizona State University

Impacts on Uniqueness

Emerging Device and Architecture Group

Reliability

- RRAM device: resistance drifts over time but very slow
- High temperature is used to accelerate the failure
- Reliability of RRAM PUF requires an excellent data retention even at elevated temperature conditions

- Introduction of RRAM
- RRAM PUF Architecture for Key Generation
- Performance Evaluation on 1kb RRAM arrays
- Strategies to Improve Performance and Reliability
- Area Cost and Performance Overhead Analysis
- Conclusion

Strategies to Improve Uniqueness

Dummy array (1024 cells) is used to generate split reference

Uniqueness	Ref_Split generated from Array No.						
	1 st	2 nd	3 rd	4 th	5 th		
μ(%) ^a	49.48	48.97	49.79	47.77	49.80		
σ(%) ^b	4.90	5.06	4.87	5.56	4.86		

- Dummy array is designed adjacent to the real array onchip (resulting in larger area overhead on chip)
- Dummy array off-chip calibrated with the same batch fabricated with the real array (no area overhead on chip)

Strategies to Improve Uniqueness Con't

- Minimizing Split S/A Offset
- Symmetrical and common centroid layout design
- 2) Increasing the size the critical transistors, especially the differential input pair

Multi-Cell-Per-Bit to Improve Reliability

 Redundancy cells are employed to minimize the probability of early lifetime failure due to cell to cell variation.

Read Current (A)

Emerging Device and Architecture Group

Layout Obfuscation for Tamper Resistance

Potential security issue

An adversary might be able, to microprobe the S/A

Layout Obfuscation for Tamper Resistance

Potential security issue

An adversary might be able to microprobe the S/A

Layout Obfuscation

Hide S/A within 1T1R array and randomize the locations

Fake and real RRAM cells uniformly fabricated on the top

- Introduction of RRAM
- RRAM PUF Architecture for Key Generation
- Performance Evaluation on 1kb RRAM arrays
- Strategies to Improve Performance and Reliability

Area Cost and Performance Overhead Analysis

Conclusion

Area Cost and Performance Overhead Analysis Using Cadence and HSPICE

- Array size: 64x128(1024)
- Circuit technology node: TSMC 65 nm

Architecture	S/A hiding (w/ or w/o)	Latency (ns)	Energy (pJ)	Area (mm²) *
1-cell-per-bit	w/o	4.24	9.59	0.0083
8-cell-per-bit	w/o	6.46	14.87	0.0390
	w/	16.45	17.69	0.2036

*Including the peripheral circuits (e.g. row decoder, COL MUX, write driver and S/A)

- Introduction of RRAM
- RRAM PUF Architecture for Key Generation
- Performance Evaluation on 1kb RRAM arrays
- Strategies to Improve Performance and Reliability
- Area Cost and Performance Overhead Analysis
- Conclusion

Conclusion

- Large variability of RRAM resistance in HRS was leveraged as a source of entropy for weak PUF application
- The performance and reliability of RRAM weak PUF were evaluated experimentally on the 1kb 1T1R arrays
- The factors that affect the RRAM weak PUF metrics were discussed and strategies were proposed to improve the performance and reliability
- The potential security problem was discussed and layout obfuscation was proposed for tamper resistance

Backup

S/A sizing

S/A TRANSISTORS' SIZE TO REDUCE OFFSET $\sigma\,$ TO 7.858 MV

Transistor	Q1/Q2	Q3/Q4	Q5/Q6	Q7/Q8	Q9	Q10/Q11
Gate Length (nm)	60	60	60	180	60	60
Width (nm)	240	240	120	900	120	120

S/A TRANSISTORS' SIZE TO REDUCE OFFSET $\sigma\,$ TO 6.511 MV

Transistor	Q1/Q2	Q3/Q4	Q5/Q6	Q7/Q8	Q9	Q10/Q11
Gate Length (nm)	60	60	60	180	60	60
Width (nm)	240	240	120	1800	240	120

Brief Comparison of Silicon PUFs

PUF	Pros	Cons	Vulnerability	
Delay based	Large # of CRPsMature technology	Efforts for Place and Route	Machine learning attack	
SRAM	Mature technology	Small # of CRPs	Photon emission attack	
STT-RAM		 ~2x ON/OFF ratio Small variation in resistance 		
PCRAM	 Compact Low fabrication cost 	Retention problem (aging effect)	Invasive probing attack (possible but very hard)	
RRAM		Severity: PCRAM>RRAM		

RRAM Array: 1-transistor-1-resistor (1T1R) vs. Cross-point Architecture

1T1R architecture

Crossbar architecture

