

UCR: An Unclonable Chipless RFID Tag

Kun Yang, Domenic Forte, and Mark M. Tehranipoor ECE Department, University of Florida

Florida Institute for Cybersecurity Research (FICS)

Supply Chain Risks

- Counterfeiting
 - Over 20,000 IPR infringing seizures with a total value of \$1.22 billion in 2014
- Theft
 - 794 cargo thefts throughout the US in 2014, with the average loss of \$232,924 per incident
- Impact
 - About 1 minion deaths a year in Africa are linked to the counterfeit drug trade
 - Globally, 7 minion deaths a year are caused by fake malaria and tuberculosis drugs

Electronic supply chain

Pharmaceutical supply chain

Food supply chain

Conventional Solutions

Barcodes and QR codes

- Easy to duplicate
- Require individual scanning
- Need direct line-of-sight and close proximity to reader

IC based RFID tags

- Price is high (as high as 1 dollar) !!!
- Tag information is possible to be overwritten by attacker

IC based RFID tag

FLORID

Existing Chipless RFID Tags

Merits of chipless RFID tags

- Extremely low price (as low as 0.1 cents)
- Elimination of tag memory
- Can be placed inside the package
- Can be directly printed on the products or their packages with conductive ink
- Shortcomings of existing chipless RFID tags
 - Require either removing or shorting some resonators to encode data
 - Increase the manufacturing time/cost
 - Easy to clone
 - Small ID size
 - Large tag area

Credit: Stevan Preradovic

35-bit chipless RFID tag (length = 88 mm, width = 65 mm)

Credit: Stevan Preradovic

Removing spiral resonances via shorting the spiral turn

All Rights Reserved

Contributions

- Theoretical analysis of resonance frequency sensitivity of slot resonator
- The *first* chipless RFID tag that exploits process variations during tag fabrication
 - ID is unique and unclonable
 - Large ID size
 - Small tag area
- An efficient look-up method that speeds up the authentication process of UCR tags
- Performance evaluation of UCR tags under extremely adverse environmental conditions
 - Noisy environment
 - Varying angles of plane wave incidence

UCR System

UCR on the PCB

- UCR tag
 - Consists of a certain number of concentric ring slot resonators placed on a certain substrate (e.g., TACONIC TLX-0)
- RFID reader
 - Provides the UWB plane wave and captures the frequency response spectrum
- Excitation signal
 - An ultra wideband (UWB) plane wave
- ID
 - The vector (*f*1, *f*2, ..., *f*N) composed of fundamental resonance points in the frequency response spectrum

Florida Institute for Cybersecurity Research

All Rights Reserved

Notch Frequency Sensitivity

- g : air gap t : substrate thickness L : slot length ε_r : dielectric constant c : light speed in vacuum
- The partial derivatives of notch frequency to slot parameters and relative permittivity of substrate material:

$$\frac{\partial f_s}{\partial g} = \frac{c\Phi \frac{\partial F}{\partial g}}{tG + 2L\Phi} \qquad \qquad \frac{\partial f_s}{\partial t} = \frac{cG\Phi \frac{\partial F}{\partial t} - Gf_s}{tG + 2L\Phi} \qquad \qquad \frac{\partial f_s}{\partial \varepsilon_r} = \frac{\Phi[cG \frac{\partial F}{\partial \varepsilon_r} + (2Lf_s - cF) \frac{\partial G}{\partial \varepsilon_r}]}{tG^2 + 2LG\Phi}$$

$$\frac{\partial F}{\partial \varepsilon_r} = \frac{0.1503432t\varepsilon_r^{0.945}}{(g + 2.3864t)^2} \qquad \qquad \frac{\partial F}{\partial t} = \frac{0.1503432g\varepsilon_r^{0.945}}{(g + 2.3864t)^2} \qquad \qquad \frac{\partial F}{\partial \varepsilon_r} = -\frac{0.365}{\varepsilon_r} + \frac{0.059535g\varepsilon_r^{-0.055}}{g + 2.3864t}$$

$$\frac{\partial G}{\partial \varepsilon_r} = \frac{0.083695}{\varepsilon_r^2} \qquad \qquad \Phi = exp(\frac{cF - 2Lf_s}{cG})$$

Notch Frequency Sensitivity to Air Gap

Sensitivity of notch frequency to air gap

- Notch frequency sensitivity to air gap appears linear to the variance of notch frequency in the frequency range of UWB.
- The larger the notch frequency is, the larger the notch frequency sensitivity to air gap will be.

FLORIDA

Notch Frequency Sensitivity to Substrate Thickness

Sensitivity of notch frequency to substrate thickness

- Notch frequency sensitivity to substrate thickness appears linear to the variance of notch frequency in the frequency range of UWB.
- Air gap has little impact on the sensitivity of notch frequency to the variance of substrate thickness.

FLORIDA

Notch Frequency Sensitivity to Relative Permittivity

- Notch frequency sensitivity to relative permittivity appears linear to the variance of notch frequency in the frequency range of UWB.
- The larger the notch frequency is, the larger the notch frequency sensitivity to relative permittivity will be.

Polarization Angle Impact

- \vec{v} : slot direction
- \vec{e} : linear polarization direction of incident plane wave
- θ : the angle between $ec{v}$ and $ec{e}$
- If θ is larger than a certain limit, the backscattered response from the U-shaped slot resonator will be too weak to be captured.

Polarization angle impact on U-shaped slot resonator

Polarization Angle Impact

 \vec{v} : slot direction

- \vec{e} : linear polarization direction of incident plane wave
- θ : the angle between \vec{v} and \vec{e}
- Polarization angle has little impact on the backscattered response from the circular ring slot resonator.

C-shaped

Split square

Circular ring

Polarization angle impact on circular ring resonator

UCR Tag

The Euclidean distance (ED) between \vec{v}_i^{j} and \vec{v}_i^{k} :

$$ED_{i}^{j,k} = |\vec{v}_{i}^{j} - \vec{v}_{i}^{k}| = \sqrt{\sum_{r=1}^{N} (f_{r}^{j} - f_{r}^{k})^{2}}$$

- Unique UCR tag
 - Random process variation

Unclonable UCR tag

- The adversaries cannot easily model the uncontrollable process variations during tag fabrication
- Remove the central circular pad

PCB Manufacturing Tolerances

Supplier	Laminate	$\boldsymbol{\mathcal{E}}_r$	\mathcal{E}_r Tolerance
TACONIC	RF-30	3.00	+/- 0.10
TACONIC	TRF-43	4.30	+/- 0.15
TACONIC	TLX-0	2.45	+/- 0.04
ROGERS	RO3003	3.00	+/- 0.04
ROGERS	RO4350B	3.48	+/- 0.05
ROGERS	RT/Duroid 6006	6.15	+/- 0.15

PCB Manufacturer Trace Width / Air Gap Tolerance PCB Thickness Tolerance

Advanced Circuits	max (+/-20%, +/-0.002")	max (+/-10%, +/-0.005")
Sunstone	+/- 20%	+/- 10%
Sierra Circuits	+/- 0.0001"	+/- 10%
Precision PCBS	+/- 20%	+/- 0.005"
RUSH PCB	+/- 0.005"	+/- 10%

- The dielectric constant tolerances can range from 1.33 % to 3.49 %.
- For the trace width and air gap, the maximum deviation between design value and measured value can be as large as 20 %.
- PCB thickness will typically have a tolerance of 10 %.

Look-up Table

Look-up table that stores all the signatures of valid tags

Enrollment phase

The signatures of all UCR tags are measured by the manufacturer

Authentication phase ۲

- Ι. Calculate the Euclidean distance between the signature of design value and the signature of TUA
- Н. Locate TUA on the AI axis using ED0, TUA
- Compare the signature of TUA with its nearest neighbor on the AI axis
- Terminate if the signature of TUA matches with its kth nearest neighbor; otherwise IV. we move on to its (k+1)th nearest neighbor

Evaluation Model

- The proposed chipless RFID tag consists of 10 concentric ring slot resonators placed on the TACONIC TLX-0 substrate.
- The metallic pattern is made of pure copper.
- Circularly polarized plane wave is used to stimulate the chipless RFID tag.
- The radio cross-section (RCS) probe is placed 50 mm away from the tag to detect the backscattered signal.

Parameter	Value	
Substrate diameter	20 mm	
Substrate thickness	N (0.5mm, 0.0423mm)	
Substrate dielectric constant	N (2.45, 0.0133)	
Patch diameter	18 mm	
Patch thickness	0.035 mm	
Central void diameter	7.4 mm	
Air gap i (i=1,,10)	N (0.2mm, 0.0169mm)	

- Substrate thickness and dielectric constant, and air gaps conform to normal distributions with design values as the mean values and tolerances as the triples of standard deviations.
- The frequency band used by UCR tags ranges from 4 GHz to 10 GHz.

- The minimum value, mean value, and maximum value of Euclidean distances for the 100 samples are 33.2039 MHz, 180.9612 MHz, and 587.0043 MHz respectively.
- Simulation result demonstrates that the Euclidean distances between signatures of UCR tags are effective at differentiating each other.

• The margin between minimum inter-tag Euclidean distance and maximum intra-tag Euclidean distance reaches approximately 50 MHz.

• The larger the angle of incidence is, the larger the Euclidean distance relative to zero incident angle will be.

FLORIDA

• The margin between minimum inter-tag Euclidean distance and maximum intra-tag Euclidean distance reaches approximately 20 MHz.

Attack Analysis

Cloning

- Process variations during tag fabrication
 - Uncontrollable
 - Cannot be easily modeled
- Replay attack
 - Equipment to record and replay the frequency response spectrum is expensive
 - Attack equipment would be detected

Removal

- Non-electronic product
 - UCR tag can be placed inside the package
- Electronic product
 - UCR tag can be integrated on the PCB
- Swapping

Conclusion and Future Work

UNIVERSITY of FLORIDA

Merits of UCR system

- ID is unique and unclonable
- UCR tags can be fabricated with the same layout and do not require postprocessing to encode data
- Small tag area (20 by 20 mm²)
- Short manufacturing time and low manufacturing cost (as low as a few cents)
- Fast authentication process with the proposed look-up method
- Temperature tracking

Florida Institute for Cybersecurity Research