University of Central Florida

A Comprehensive Netlist Trust Analysis Toolset for IC/IP Trust

Yier Jin

Department of Electrical Engineering and Computer Science
University of Central Florida

yier.jin@eecs.ucf.edu

Netlist Trust Analysis

- Purpose of Netlist Trust Analysis
 - Malicious nodes detection
 - Full functionality reconstruction

```
N5 = DFF(N4)

N6 = AND(N1, N3, N5, N11)

N7 = DFF(N6)

N8 = AND(I1, I2, I3, N7)

N9 = OR(N7, N8)

N10 = DFF(N9)
```



```
if (indata[31:0] == 0xAAAAAAAAA
and count[30:0] == 0x0
and sqrrdy and reset == 0 and
multgo == 0 and ...
cypher[31:0] <= inExp[31:0];
root[31:0] <= 0xAAAAAAAAA;</pre>
```


Developed Tools

- REbuilding Logic: Identification and Classification (RELIC)
 - Function: Differentiate state register and data register
 - Input: Netlist
 - Output: Gate list
- REconstructing Finite State Machine (REFSM)
 - Function: Reconstruct the control logic
 - Input: Netlist
 - Output: FSM
- Recovering Datapath and Signal Buses (REBUS)
 - Function: Reconstruct the datapath
 - Input: Netlist
 - Output: Datapath
- REHOP
 - Function: Obfuscate the netlist
 - Input: netlist
 - Output: obfuscated netlist

Demo for REFSM

- RS232 Netlist Analysis
 - Two submodules: transmission and receiver
 - Each submodule has its own FSMs

FSM Isolation

- FSM States Independence Analysis
 - Two FSMs are separated

Results Validation

Actual FSMs of Two Submodules

FSM for Receiver

FSM for Transmitter

Experimental Results

- REFSM Performance Analysis
 - Depth vs Time
 - Can handle circuits of various sizes
 - Overall computation time is low

Name	Depth	Time (s)	Total Registers	Total Gates
UART	Inf	1	59	168
s349	inf	< 1	15	176
32-bit RSA	0	< 1	555	2139
MC 8051 uP	0	39	578	6590
SPARC uP	0	600	119911	232978

REBUS: Datapath Recovery

RELIC-based Datapath Recovery Tool

- Input: Known word (input and output data)
- Output: A graph model of the data buses within a Netlist

Traces Word Paths Through Netlist

- Relies on known word signal pairs to generate new word pairs
 - Fan-out/Fan-in pairs are examined
 - Similar signals are added to the known words list
- Edges are added based on word-to-word interactions

Case Study

- Pipelined version of AES-128
- 174,856 gates (no explicit control logic, fully pipelined)

Case Study: AES-128

Case Study: AES-128

REHOP

- Objective
 - Third-party service for IP protection
 - No RTL code is required
- Working Procedure

Questions?

Thanks!

Yier Jin University of Central Florida Email: yier.jin@eecs.ucf.edu