

Template Attacks using Classification Algorithms

Elif Özgen, Louiza Papachristodoulou, Lejla Batina

Digital Security – Radboud University Nijmegen Technical University Eindhoven louizap@cs.ru.nl

5 May 2016

Louiza Papachristodoulou

Outline

Radboud University Nijmegen

Introduction

Previous Work: OTA with Pearson correlation

Our contribution: OTA with Classification Algorithms

Conclusions - Future Research

Previous Work: OTA with Pearson correlation Our contribution: OTA with Classification Algorithms Conclusions - Future Research

Our Contribution

Radboud University Nijmegen

Previous Work: OTA with Pearson correlation Our contribution: OTA with Classification Algorithms Conclusions - Future Research

ECDLP and scalar multiplication

- Let *E* be an EC over a finite field \mathbb{F}_q , $G = \langle P \rangle$ a cyclic subgroup of $E(\mathbb{F}_q)$ and $Q \in G$.
- Scalar multiplication $kP = \underbrace{P + P + \dots + P}_{k-\text{times}}$
- **ECDLP:** Given P, Q on an EC, find $k \in \mathbb{Z}$ such that Q = kP.
- Typical EC cryptosystem

- P : fixed system parameter
- Q : public key
- k : secret key

Previous Work: OTA with Pearson correlation Our contribution: OTA with Classification Algorithms Conclusions - Future Research

Template Attacks

Radboud University Nijmegen

Chari, Rao, Rohatgi, "Template Attacks" [2002]

- Combination of statistical modelling and power-analysis attack techniques
- Models of signal and noise
- Use experimental device identical to the DUT
- Template-Building Phase Templates correspond to each possible value of unknown key
- Template-Matching Phase Use iterative classification

Previous Work: OTA with Pearson correlation Our contribution: OTA with Classification Algorithms Conclusions - Future Research

Common classifiers

- Euclidean Distance $d(\mathbf{p}, \mathbf{q}) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$
- Pearson correlation $\rho_{(X,Y)} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$
- Machine Learning techniques
 - Classification Algorithms (e.g. Naïve Bayes, kNN, SVM)
 - 2 Clustering Algorithms (e.g. Centroid-, Distibution-based)

Previous Work: OTA with Pearson correlation Our contribution: OTA with Classification Algorithms Conclusions - Future Research

Radboud University Nijmegen

Classification Algorithms

Naïve Bayes Classifier: function that combines the naive Bayes probability model with a decision rule. Common rule: pick the hypothesis that is most probable; the maximum value of the a posteriori probability

$$p(c_k|\mathbf{x}) = rac{p(c_k) \ p(\mathbf{x}|c_k)}{p(\mathbf{x})}$$

e k-Nearest Neighbour

$$\begin{bmatrix} A & A & A & B \\ A & A & 0 & B \\ A & B & B & B \\ B & B & B & B \end{bmatrix} \begin{bmatrix} A & A & A & B \\ A & A & B & B \\ A & B & B & B \end{bmatrix}$$

SVM outputs an optimal hyperplane which categorizes new examples, i.e. one that gives the largest minimum distance to the training points

Acquisition Setup

Figure: Acquisition with STM32F4

Radboud University Nijmegen

OTA on double-and-add-always

Optimized double-add-always on twisted Edwards curve

Input: P, $k = (k_{x-1}, k_{x-2}, ..., k_0)_2$ Output: Q = kP1: $R_0 \leftarrow P$ 2: for i = x - 2 downto 0 do 3: $R_0 \leftarrow 2R_0$ 4: $R_1 \leftarrow R_0 + P$ 5: $R_0 \leftarrow R_{k_i}$ 6: end for 7: return R_0 k = 100 $R_0 = P$ $R_0 = 2P, R_1 = 3P, \text{ return } 2P$ $R_0 = 4P, R_1 = 5P, \text{ return } 4P$ k = 110 $R_0 = P$ $R_0 = 2P, R_1 = 3P, \text{ return } 3P$ $R_0 = 6P, R_1 = 7P, \text{ return } 6P$

Radboud University Nijmegen

Attack methodology

- **1** Profiling of the device.
- O Acquire target and template traces.
- **3** Template Matching of template traces with the corresponding part of the target trace.

	K _{MSB} =1		K _{MSB}	K _{MBS-2}	
Target Trace	DBL(O)	ADD(O,P)	DBL(P)	ADD(2P,P)	OF DBL (3P)
Template Trace of 2P	DBL(O)	ADD(O,2P)	DBL(2P)	ADD(4P,2P)	time

Figure: Correlation of (i + 1)-iteration of target with 1^{st} or 2^{nd} -iteration of template

Template for multiplication operation

Figure: Multiplication pattern for k = 0

Figure: Cross correlation of multiplication with target trace

OTA on Ed25519 curve with Power Analysis

- ATMega163 with NaCl implementation of twisted Edwards curve with unified formulas.
- Correct bit assumptions: 84 88%, wrong: 50 72%
- Pattern matching threshold: 80%

Figure: Pattern match of P to 2P (blue) and to 3P (brown) for MSB 1000

[L. Batina, L. Chmielewski, L. Papachristodoulou, P. Schwabe and M. Tunstall. Online Template Attacks. In INDOCRYPT 2014 - 15th International Conference on Cryptology in India, pages 21-36, 2014.]

- Horizontal: 100% success rate with one template trace per bit
- Vertical: Average template traces
- Use 2 averaged templates per key-bit
- Error detection and correction

Number of average traces	1	10	50	100
Success Rate	69%	80,70%	91,60%	99,80%

Table: Different success rates according to the number of average template traces on BP curve.

[M. Dugardin, L. Papachristodoulou, Z. Najm, L. Batina, J.L. Danger, S. Guilley. Dismantling real-world ECC with Horizontal and Vertical Template Attacks. COSADE 2016]

Radboud University Nijmegen

Cross-Correlation

Figure: Cross-correlation of multiplication pattern with the template trace 2P

Figure: Cross-correlation of multiplication pattern with the template trace 3P

Louiza Papachristodoulou

Radboud University Nijmegen

Experimental Results

#Templates	Naïve Bayes	kNN ($k = 4$)	SVM
160	2[1,0]	2[1,0]	2[1.084593, -1.084593]
80	2[1,0]	2[1,0]	2[1.040720, -1.040720]
40	2[1,0]	2[1,0]	2[0.675875, -0.675875]
20	2[1,0]	2[1,0]	2[0.554645, -0.554645]

Table: Different success rates according to the number of average template traces on BP curve.

Conclusions - Future research

- Classification algorithms and ML techniques in general are very promising for SCA. In our experiments, 100% success rate with average of 20 template traces.
- Work with different distinguishers for HW implementations and automate the technique.
- Implement countermeasures (randomization of scalar, randomization of input point, use isomorphic curves) and evaluate their practical resistance.

Radboud University Nijmegen

