
A Separation and Protection Scheme
for On-Chip Memory Blocks in FPGAs

Luis E. Ramírez Rivera, Xiaofang Wang, Danai Chasaki

5/27/16HOST Symposium1

FPGAs
} Field-Programmable

Gate Arrays
} Configurable after

manufacturing.
} Complex circuits can be

designed.
} Lower frequency than

most ASICs, but more
flexible.

5/27/16HOST Symposium2

"Altera StratixIVGX FPGA" by Altera Corporation - Altera Corporation. Licensed under CC BY 3.0
via Commons - https://commons.wikimedia.org/wiki/File:Altera_StratixIVGX_FPGA.jpg

Types of Threats
} Who

} The competition
} Black-hats (criminals)
} The government

} What
} Find keys
} Steal bitstreams/IP
} Insert Hardware Trojan
} Learn sensitive data
} Deny service

5/27/16HOST Symposium3

} Why
} Steal IPs to use, sell or

reverse engineer
} Clone/Counterfeit
} Circumvent security

measures
} Financial/identity fraud/theft
} Wreak havoc (e.g., power

grid)

} How
} Technical attack

Typical Memory Types in FPGAs
} Off-Chip

} SRAM
} SDRAM
} Flash
} RLDRAM

} On-Chip
} Simple Flip-flops
} Block RAM
} Distributed RAM

5/27/16HOST Symposium4

[5]

Problem

5/27/16HOST Symposium5

} On-chip memory is practically unprotected
} Flat memory-addressing scheme & nothing else!

} It is also becoming more plentiful
} More data will be vulnerable

} Cannot use encryption for security
} Encryption takes a long time
} Uses a lot of resources

Security Policy

5/27/16HOST Symposium6

} Three components: MID, PID, A
} Module ID: Identifier that specifies modules to access memory
} Privilege ID: Designates privilege value based on trust
} Action: Action to be performed on memory.

} Memory access can then be defined as
} MemAccess = (MID, A, Data, Addr)

} This memory access is legal when, after a request, the
MID is compared with a table of privileges and the
comparison yields a true value.

} This security policy language allows us to be able to
structure a design that disallows unauthorized access.

Separation Kernel

5/27/16HOST Symposium7

} Isolation technique that divides all resources under its
control into blocks.
} The actions of an active user in one block are isolated from

another user in another block, unless an explicit means for that
communication has been established.

} A separation kernel achieves isolation of different blocks
by virtualizing shared resources.
} To each user, each block appears to be completely accessible,

but a security policy has ultimate control.
} This implemented separation kernel makes sure that:

} Memory is allocated so users can access non-overlapping data
} No simultaneous read-write access in memory by two users

Security Policy Implementing Kernel

5/27/16HOST Symposium8

Advantages:

5/27/16HOST Symposium9

} It is fast!
} A fast state machine can be made to satisfy requirements

} Can be implemented with very little resource
overhead
} No BlockRAM is necessary for this solution

} Provides protection from unwanted access
} Shared memory schemes are particularly benefitted

} It can be easily implemented in an existing design.

Reference Monitor

5/27/16HOST Symposium10

} Consists of a look-up table, a Finite-State Machine, and an
arbiter
} LUT has the PID for each MID.
} Arbiter decides which IP goes in the FSM
} FSM determines whether to allow or deny the memory access.

} Connects to two IPs each, and for communications
between monitors, a crossbar switch was built.

} Each monitor connects to a Block RAM, creating a kernel
block per each Block RAM

} Strict security concepts were implemented:
} Internal components are isolated & data flushed out of buses

Reference Monitor

5/27/16HOST Symposium11

The Design

5/27/16HOST Symposium12

Implementation

5/27/16HOST Symposium13

} For the implementation of our separation kernel, the on-
chip memory block illustrated before was used as a true
dual-port RAM memory

} The architecture was developed on a Xilinx Virtex-6
XC6VLX240T-1FF116 board, by using the Xilinx Design
Suite ISE 13.4.

} This entire system was tested at a operative
frequency of 100 MHz using ModelSim SE 6.6f

} Its effective frequency in the physical device was 500 MHz

Results

5/27/16HOST Symposium14

Results

5/27/16HOST Symposium15

Analysis

5/27/16HOST Symposium16

Resource
Entire Design Monitor Only

Used/Available % Used Used/Available % Used

Slice Registers 1,332/301, 440 1% 360/301, 440 1%

LUTs 11, 601/150, 720 7% 588/150, 720 1%

Block RAMs 8, 192/58, 400 14% 0/58, 400 0%

Performance On Original Worked Design

Delay 1 Clock cycle 3 Clock cycles (average)

Size Overhead None Very Small

Security Achieved None Separation Kernel Design

} The separation kernel designed has only one transition state between
memory access.

} The number of clock cycles inside the monitor itself has been reduced
by implementing pipelining between the internal components.

} This allows for the monitor to be used in throughput-heavy and low-
latency applications, such as burst-read or burst-write memory access.

Conclusion
} The work provided here shows a memory security

scheme that has been designed and implemented for on-
chip memory inside FPGAs.

} The simulations show that the separation kernel that was
designed is successful in securing the on-chip memory
from unauthorized accesses from IPs whom are
untrusted.

} The work here can be expanded to include other security
concerns such as integrity checks for the memory to
detect tampered memory values, and the implementation
of a different architecture to organize the communication
between monitors.

5/27/16HOST Symposium17

References

5/27/16HOST Symposium18

} [1] S. Mal-Sarkar and A. Krishna, “Hardware trojan attacks in FPGA devices:
threat analysis and effective counter measures,” in Proc. 24th edition of the
great lakes symposium on VLSI (GLSVLSI ’14), 2014, pp. 287–292.

} [2] L. Fiorin and S. Lukovic, “Implementation of a reconfigurable data
protection module for NoC-based MPSoCs,” in IEEE Int’l Symp. On Parallel
and Distributed Processing (IPDPS ’08), 2008, pp. 14–18.

} [3] T. Levin and C. Irvine, “A Least Privilege Model for Static Separation
Kernels,” in E-business and Telecommunication Networks, vol. 9 of
Communications in Computer and Information Science, 2008, pp. 146–158.

} [4] T. Huffmire and S. Prasad, “Policy-Driven Memory Protection for
Reconfigurable Hardware,” in Proc. of 11th European Symposium on
Research in Computer Security, 2008, pp. 461–478.

} [5] XILINX. (2011) Virtex-6 FPGA Memory Resources User Guide.
ug363.pdf. [Online]. Available:
http://www.xilinx.com/support/documentation/user guides/

} [6] XILINX. (2015) UltraScale FPGA Overview. ds890.pdf [Online].
Available: http://www.xilinx.com/support/documentation/data sheets/ds890-
ultrascale-overview.pdf

