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FPGAs
} Field-Programmable 

Gate Arrays
} Configurable after 

manufacturing.
} Complex circuits can be 

designed.
} Lower frequency than 

most ASICs, but more 
flexible.
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Types of Threats
} Who

} The competition
} Black-hats (criminals)
} The government

} What
} Find keys
} Steal bitstreams/IP
} Insert Hardware Trojan 
} Learn sensitive data
} Deny service
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} Why
} Steal IPs to use, sell or 

reverse engineer
} Clone/Counterfeit
} Circumvent security 

measures
} Financial/identity fraud/theft
} Wreak havoc (e.g., power 

grid)

} How
} Technical attack



Typical Memory Types in FPGAs
} Off-Chip

} SRAM
} SDRAM
} Flash
} RLDRAM

} On-Chip
} Simple Flip-flops
} Block RAM
} Distributed RAM
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Problem
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} On-chip memory is practically unprotected
} Flat memory-addressing scheme & nothing else!

} It is also becoming more plentiful
} More data will be vulnerable

} Cannot use encryption for security
} Encryption takes a long time
} Uses a lot of resources



Security Policy

5/27/16HOST Symposium6

} Three components: MID, PID, A
} Module ID:  Identifier that specifies modules to access memory
} Privilege ID:  Designates privilege value based on trust
} Action:  Action to be performed on memory.

} Memory access can then be defined as
} MemAccess = (MID, A, Data, Addr)

} This memory access is legal when, after a request, the 
MID is compared with a table of privileges and the 
comparison yields a true value.

} This security policy language allows us to be able to 
structure a design that disallows unauthorized access.



Separation Kernel
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} Isolation technique that divides all resources under its 
control into blocks.
} The actions of an active user in one block are isolated from 

another user in another block, unless an explicit means for that
communication has been established.

} A separation kernel achieves isolation of different blocks
by virtualizing shared resources.
} To each user, each block appears to be completely accessible, 

but a security policy has ultimate control.
} This implemented separation kernel makes sure that:

} Memory is allocated so users can access non-overlapping data
} No simultaneous read-write access in memory by two users



Security Policy Implementing Kernel
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Advantages:
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} It is fast!
} A fast state machine can be made to satisfy requirements

} Can be implemented with very little resource 
overhead
} No BlockRAM is necessary for this solution

} Provides protection from unwanted access
} Shared memory schemes are particularly benefitted

} It can be easily implemented in an existing design.



Reference Monitor
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} Consists of a look-up table, a Finite-State Machine, and an 
arbiter
} LUT has the PID for each MID.
} Arbiter decides which IP goes in the FSM
} FSM determines whether to allow or deny the memory access.

} Connects to two IPs each, and for communications 
between monitors, a crossbar switch was built.

} Each monitor connects to a Block RAM, creating a kernel 
block per each Block RAM

} Strict security concepts were implemented:
} Internal components are isolated & data flushed out of buses



Reference Monitor
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The Design
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Implementation
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} For the implementation of our separation kernel, the on-
chip memory block illustrated before was used as a true 
dual-port RAM memory 

} The architecture was developed on a Xilinx Virtex-6 
XC6VLX240T-1FF116 board, by using the Xilinx Design
Suite ISE 13.4. 

} This entire system was tested at a operative
frequency of 100 MHz using ModelSim SE 6.6f

} Its effective frequency in the physical device was 500 MHz



Results
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Results
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Analysis

5/27/16HOST Symposium16

Resource
Entire Design Monitor Only

Used/Available % Used Used/Available % Used

Slice Registers 1,332/301, 440 1% 360/301, 440 1%

LUTs 11, 601/150, 720 7% 588/150, 720 1%

Block RAMs 8, 192/58, 400 14% 0/58, 400 0%

Performance On Original Worked Design

Delay 1 Clock cycle 3 Clock cycles (average)

Size Overhead None Very Small

Security Achieved None Separation Kernel Design

} The separation kernel designed has only one transition state between 
memory access. 

} The number of clock cycles inside the monitor itself has been reduced 
by implementing pipelining between the internal components.

} This allows for the monitor to be used in throughput-heavy and low-
latency applications, such as burst-read or burst-write memory access.



Conclusion
} The work provided here shows a memory security 

scheme that has been designed and implemented for on-
chip memory inside FPGAs. 

} The simulations show that the separation kernel that was 
designed is successful in securing the on-chip memory 
from unauthorized accesses from IPs whom are 
untrusted.

} The work here can be expanded to include other security 
concerns such as integrity checks for the memory to 
detect tampered memory values, and the implementation 
of a different architecture to organize the communication 
between monitors.
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