IP Core Protection using Voltage-Controlled Side-Channel Receivers

Peter Samarin^{1,2}, Kerstin Lemke-Rust¹, and Christof Paar²

Bonn-Rhein-Sieg University of Applied Sciences¹ Ruhr-Universität Bochum² Germany

Bonn-Rhein-Sieg University of Applied Sciences

IP Protection on FPGAs

- How to detect illegally used cores in the field?
- Challenges
 - Bitstreams are encrypted
 - IP cores are parts of larger systems

IP Protection using Side-Channels

Verification

- Measure the power consumption
- Correlate the known LFSR sequence to the measurement

(Becker et al., 2010)

May 4, 2016

Our Contribution

- Establish an input side channel to individual IP Cores using voltage modulation
- (Sun et al., 2011) used temperature (several bits/s)

Voltage-Based Side-Channel Receivers

- Supply voltage control
 - 3 Voltage levels: V_{reset}, V₀, V₁ (V₂ is not used)
- Detection of changes in supply voltage
 - Ring oscillator sampled by a fixed clock
 - Relative threshold to find rising and falling edges
 - Manchester coding

IP Protection

FPGA

- Embed an SC-receiver into each protected IP core
- Send commands to protected IP cores

Verification

- Send a core-dependent secret codeword
- 2 Send commands, observe the behavior of the chip:
 - Turn off the core
 - Set output data to zeros
 - Return to normal operation
 - Deselect core
- If the behavior is unusual then stop, else goto step 2

May 4, 2016

Experimental Setup

A Proof-of-Concept Implementation

- Digilent board with a Spartan 3 (XC3S200) FPGA¹
- 50MHz external clock
- Voltage control by a breadboard circuit
- Voltage levels V_{reset} = 0V, V₀ = 2.8V, V₁ = 3.2V
- Transmission rate 2.4 KBits/s
- 32-Bit codewords

¹http://store.digilentinc.com/spartan-3-board-retired/

The Price to Pay

Codeword size (bits)	N. of slices
32	49
64	70
80	81
128	111

- Need to try several codewords (in the worst case all)
- Cannot measure once and try them all just on the data
- Cores without clock cannot be protected
- More recent work on SASEBO-GII board²
 - Spartan 3 FPGA for control
 - Virtex 5 (XC5VLX50) FPGA for measurements
 - Same breadboard circuit didn't work (voltage regulator)

²http://satoh.cs.uec.ac.jp/SASEBO/en/board/sasebo-g2.html

Summary and Future Work

- Voltage-controlled side-channel receiver on FPGAs
 - IP protection of individual cores
 - Strong proof of IP ownership
- Other applications
 - Hardware trojans triggered by a codeword
 - Protection against counterfeits
- Future work
 - Testing other FPGAs and boards
 - Adressing voltage regulators
 - Two-way side-channel communication

References

Becker, G., Kasper, M., Moradi, A., and Paar, C. (2010). Side-channel based watermarks for integrated circuits. In *Hardware-Oriented Security and Trust (HOST), 2010 IEEE International Symposium on*, pages 30–35.

Sun, J., Bittner, R., and Eguro, K. (2011). FPGA side-channel receivers. In *Proceedings of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays*, FPGA '11, pages 267–276, New York, NY, USA. ACM.