
The Other Side of The Coin: Analyzing
Software Encoding Schemes Against Fault

Injection Attacks

Jakub Breier, Dirmanto Jap, and Shivam Bhasin

Physical Analysis and Cryptographic Engineering
Nanyang Technological University, Singapore

4 May 2016

1 / 27



Table of Contents

1 Dual-Rail Precharge Logic

2 Fault Simulation Methodology

3 Simulation and Experimental Results

4 Countermeasure Against FA

5 Conclusion

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 2 / 27



Table of Contents

1 Dual-Rail Precharge Logic

2 Fault Simulation Methodology

3 Simulation and Experimental Results

4 Countermeasure Against FA

5 Conclusion

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 3 / 27



Dual-Rail Precharge Logic (DPL)2

• Hiding countermeasure against SCA - hides the data
dependant leakage from the device.

• DPL is a circuit-level countermeasure which removes
data-dependant leakage by introducing a generated False (F)
rail to compensate the activity of the original True (T) rail.

• Precharge phase is a spacer between every two Evaluation
phases - it hides both Hamming distance and Hamming
weight leakage.

• Selmane et al.1 showed in 2009 that DPL possesses properties
that resist fault attacks naturally.

1N. Selmane, S. Bhasin, S. Guilley, T. Graba, and J.-L. Danger.
WDDL is Protected Against Setup Time Violation Attacks, FDTC’09.

2K. Tiri and I. Verbauwhede. A Logic Level Design Methodology
for a Secure DPA Resistant ASIC or FPGA Implementation, DATE’04

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 4 / 27



Software DPL

• The first software DPL was presented in 2011 by Hoogvorst et
al.3.

• In our work we examined two software DPL schemes:
• Bit sliced implementation of balanced assembly code, using

look-up tables4, “DPL” implementation.
• Balanced encoding achieved by adding complementary bits to

processed data5, “Encoding” implementation.

3P. Hoogvorst, J.-L. Danger, and G. Duc. Software Implementation
of Dual-Rail Representation, COSADE 2011.

4P. Rauzy, S. Guilley, and Z. Najm. Formally Proved Security of Assembly
Code Against Leakage, PROOFS 2014.

5C. Chen, T. Eisenbarth, A. Shahverdi, and X. Ye. Balanced
Encoding to Mitigate Power Analysis: A Case Study, CARDIS 2014.

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 5 / 27



“DPL” Implementation

• All the logical gates are implemented by using look-up tables
(LUT) with balanced addressing.

• Bit-slicing – one byte carries only one bit of effective
information.

• Only last two bits of each byte are used – 1 is encoded as 01
and 0 is encoded as 10.

Table: Look-up tables for “DPL” implementation.

index 0000 - 0100 0101 0110 0111 - 1000 1001 1010 1011 - 1111

and 00 01 10 00 10 01 00

or 00 01 01 00 01 10 00

xor 00 10 01 00 01 10 00

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 6 / 27



“Encoding” Implementation

• One byte carries 4 bits of information.

• Each nibble is balanced by adding complementary bits, in one
of the two forms: b3b̄3b2b̄2b1b̄1b0b̄0 and b0b̄2b1b3b̄1b2b̄0b̄3.

• Following this rule, intermediate value at every point of time
has Hamming weight 4.

• The scheme is explained on Prince cipher, which can be
realized by using a balanced XOR and a balanced table-lookup
– we have examined both operations.

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 7 / 27



Table of Contents

1 Dual-Rail Precharge Logic

2 Fault Simulation Methodology

3 Simulation and Experimental Results

4 Countermeasure Against FA

5 Conclusion

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 8 / 27



Fault Simulations

• Fault simulator was written in Java.

• We used 8-bit AVR microcontroller assembly code.

• The simulator injects faults in the target code under defined
fault models.

• We considered inputs and outputs already encoded.

• We analyzed every instruction of code.

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 9 / 27



Fault Simulation Methodology

Fault Model

DPL Input

Faulty DPL Output

- single/multiple bit flip
- instruction skip
- instruction change
- random byte fault
- stuck-at fault

Target
Code

Output Checker

Fault Position

- for i in instructions
- for j in register bits

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 10 / 27



Inputs/Outputs

• DPL: uses inputs/outputs in format 00000001 for 1 and
00000010 for 0. There are only two possible values for a valid
input, resulting in 4 different combinations of operands.

• Encoding: has inputs/outputs in format a3ā3a2ā2a1ā1a0ā0
and b3b̄3b2b̄2b1b̄1b0b̄0. Therefore, one variable in this encoding
can take 16 different values, resulting in 256 input
combinations.

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 11 / 27



Outputs

We defined three possible output sets:

• VALID – output follows the proper encoding of each
implementation.

• INVALID – output does not follow the proper encoding.

• NULL – output is all zero.

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 12 / 27



Fault Models

• Single/multiple bitflip – a content of the destination register
of every operation was altered either to simulate single or
multiple bit flip.

• Instruction skip – we skipped one or two instructions. Again,
we tested all the possible combinations of instruction skips.

• Random byte fault – because of the specific encoding format,
random byte faults are a subset of single/multiple bit flip
faults.

• Stuck-at fault – we changed the content of the destination
register of all the instructions in the code, one instruction at a
time. We tested two values, all zeros and all ones.

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 13 / 27



Table of Contents

1 Dual-Rail Precharge Logic

2 Fault Simulation Methodology

3 Simulation and Experimental Results

4 Countermeasure Against FA

5 Conclusion

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 14 / 27



Vulnerability Against Fault Models

Fault model Encoding XOR Encoding LUT DPL

Single bit flip No No No

Double bit flip Yes Yes Yes

Single instruction skip No No Yes

Double instruction skip Yes No Yes

Stuck-at fault Yes No No

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 15 / 27



Experimental Setup

• DUT: Atmel ATmega328P microcontroller running at 16 MHz

• Laser: Infrared 1064 nm diode pulse laser.

• We found all the three kinds of faults, i.e. INVALID, VALID
and NULL.

• The sensitive area of the chip is approximately 1100×80 µm2

large, out of 3×3 mm2 (≈ 0.98% of the whole chip area).

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 16 / 27



Results Overview

• We tested five different fault models and the faulty output
could attain three possible states (VALID, INVALID, NULL).

• For Encoding XOR, majority of the faults are INVALID for all
fault models. Few faults are VALID and a negligible number
of faults are NULL – this situation corresponds with
experimental results.

• In Encoding table look-up and DPL XOR, the simulations
report a good mix of INVALID and NULL – however, number
of VALID faults deviates from simulations to experiments.

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 17 / 27



Encoding XOR Implementation - Simulations and
Experiment

Simulations

0.0 0.2 0.4 0.6 0.8 1.0

Stuck-At

2-Ins. Skip

1-Ins. Skip

2-Bit Flip

1-Bit Flip

Valid

Invalid

Null

Experiment

VALID 5.9%
INVALID 93.6%
NULL 0.6%

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 18 / 27



Encoding LUT Implementation - Simulations and
Experiment

Simulations

0.0 0.2 0.4 0.6 0.8 1.0

Stuck-At

2-Ins. Skip

1-Ins. Skip

2-Bit Flip

1-Bit Flip

Valid

Invalid

Null

Experiment

VALID 32.4%
INVALID 47.7%
NULL 19.8%

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 19 / 27



DPL Implementation - Simulations and Experiment

Simulations

0.0 0.2 0.4 0.6 0.8 1.0

Stuck-At

2-Ins. Skip

1-Ins. Skip

2-Bit Flip

1-Bit Flip

Valid

Invalid

Null

Experiment

VALID 22.2%
INVALID 54.7%
NULL 23.1%

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 20 / 27



Fault Propagation

• A VALID fault will always propagate to the output.

• Any INVALID or NULL input to DPL XOR and Encoding
LUT will lead to a NULL at the output.

• Encoding XOR does propagate faults – there are several
combinations of inputs that lead to VALID output.

• Also, a combination of NULL input and VALID input leaks
information about the input.

• For instance, let first input be A = 0x00 and the second input
be B = 0xA5. The output will be in the form
b̄3b̄3b̄2b̄2b̄1b̄1b̄0b̄0, bi ∈ B, therefore in this case it will result in
0x0F .

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 21 / 27



Table of Contents

1 Dual-Rail Precharge Logic

2 Fault Simulation Methodology

3 Simulation and Experimental Results

4 Countermeasure Against FA

5 Conclusion

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 22 / 27



Hardening the DPL Implementation

• For resisting single-instruction skips, we need to avoid two
shift instructions, because these can produce VALID outputs
in the case one of LSL instructions is skipped.

• We propose to use another look-up table to avoid these two
instructions:

inputs 01 10

01 0101 0110

10 1001 1010

• To prevent double instruction skips, we added a partial
redundancy.

• Clock cycle overhead: 11 → 19 (72.3%)

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 23 / 27



Countermeasure - Results

The only way to overcome the countermeasure is to inject double
instruction skips on two instructions. Probability of successfully
performing such a fault is 0.0048.

0.0 0.2 0.4 0.6 0.8 1.0

Stuck-At

2-Ins. Skip

1-Ins. Skip

2-Bit Flip

1-Bit Flip

Valid

Invalid

Null

0.0%

Invalid
6.5%

Null
93.5%

Invalid
6.5%

Null
93.5%

0.0%

Invalid
6.5%

Null
93.5%

Simulations Experiment

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 24 / 27



Table of Contents

1 Dual-Rail Precharge Logic

2 Fault Simulation Methodology

3 Simulation and Experimental Results

4 Countermeasure Against FA

5 Conclusion

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 25 / 27



Conclusion

• We have examined two software DPL proposals with respect
to fault injection attacks – our results show weaknesses of
these implementations.

• We simulated different fault models and validated our findings
experimentally using laser fault injection station.

• Double bit flip fault model is the most effective one to disturb
the algorithm while still producing a valid output.

• In comparison to hardware DPL, it takes significantly lower
effort to disturb its software version using this fault model.

• We provided a countermeasure lowering the probability of a
successful attack to 0.0048.

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 26 / 27



Thank you!
Any questions?

J. Breier, D. Jap, S. Bhasin Analyzing Software Encoding Schemes Against FI Attacks 27 / 27


	Dual-Rail Precharge Logic
	Fault Simulation Methodology
	Simulation and Experimental Results
	Countermeasure Against FA
	Conclusion

