Large Laser Spots and Fault Sensitivity Analysis

Falk Schellenberg, Markus Finkeldey, Nils Gerhardt, Martin Hofmann, Amir Moradi and Christof Paar

Ruhr-Universität Bochum

Schellenberg et al.: Large Laser Spots and Fault Sensitivity Analysis May 4, 2016, IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA

Fault Injection

Idea: Faulty computation might leak secret key!

Trivial Fault Attack

Assume asymmetric key memory with respect to faults:

- \Box 0 \rightarrow 1: possible using fault injection
- \Box 1 \rightarrow 0: impossible
- Attack:
 - Send identical input repeatedly
 - Inject fault into key memory, bit-wise!
 - Ciphertext?
 - $\Box \text{ Changed } \rightarrow \text{key bit was } 0$
 - \Box Unchanged \rightarrow key bit was already 1

Fault Injection

Physical Methods

- Clock glitches
- Voltage glitches
- EM pulses
- Light (flash lamps, lasers)

Laser Fault Injection

- Precise spatial control ("up to single transistors")
- Precise timing
- SRAM: Trivial fault attack possible!

Motivation

Future?

- Spot size is physically bounded!
- Diffraction limit (Rayleigh-Criterion): $\frac{1.22 \lambda}{2 \text{ NA}}$
- Example:
 - □ Typical numerical aperture (NA): 0.7
 - $\Box \lambda = 975 nm$
 - $\square \rightarrow 850$ nm effective spot

Physical limit for laser fault injection reached?

- SRAM: limit at 45nm? → maybe*
- Latest technology inherently secure? No!

*Selmke et al.: "Precise Laser Fault injections into 90nm and 45nm SRAM-cells", CARDIS'15

RUF

Large Laser Spots and Fault Sensitivity Analysis*

**Moradi et al.*: "On the Power of Fault Sensitivity Analysis and Collision Side-Channel Attacks in a Combined Setting", CHES'11

Schellenberg et al.: Large Laser Spots and Fault Sensitivity Analysis May 4, 2016, IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA

Combinatorial Circuits

Schellenberg et al.: Large Laser Spots and Fault Sensitivity Analysis

May 4, 2016, IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA

- Critical delay depends on input
- → *Identical* input means *identical* critical delay

"Collision Correlation"-Enhanced Fault Sensitivity Analysis

How to exploit?

Example: glitch position fixed at 50% faulty outputs, 1000 random plaintexts

May 4, 2016, IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA

"Collision Correlation"-Enhanced Fault Sensitivity Analysis

How to exploit?

Example: glitch position fixed at 50% faulty outputs, send 1000 inputs

→ Test all possible $\Delta \in \{0, 1, 2, ..., 255\}$

Schellenberg et al.: Large Laser Spots and Fault Sensitivity Analysis

May 4, 2016, IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA

RUHR-UNIVERSITÄT BOCHUM

Large Laser Spots and Fault Sensitivity Analysis

Schellenberg et al.: Large Laser Spots and Fault Sensitivity Analysis May 4, 2016, IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA RUHR-UNIVERSITÄT BOCHUM

Timing Violations using Lasers

Laser Fault Injection in a nutshell:

- Set a signal to a false value
- For the **duration** of the pulse

Timing Violations:

Identical input dependency as before!

Schellenberg et al.: Large Laser Spots and Fault Sensitivity Analysis

May 4, 2016, IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA

Large Laser Spots?

Schellenberg et al.: Large Laser Spots and Fault Sensitivity Analysis

May 4, 2016, IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA

Setup

Device Under Test: Atmel ATXMega16A4U

- 250nm feature size
- Hardware AES
 - 375 clock cycles (serialized SubBytes)
 - Target: Combinatorial Sbox circuit

Optical Setup

- Mitutoyo NIR $10x \rightarrow 4.5 \ \mu m$ spot size @ 975nm
- 80 μ m out-of-focus \rightarrow 45 μ m spot size

45µm

1µm 🛑

RU

ATXmega16A4U AES

a a second a second descent a second second descent from the second second second a second second second second

backside NIR

Characterization: Input vs Pulse Length

Four different fixed inputs, increasing laser pulse width (steps of 5ps) Colors: different faulty output values

Schellenberg et al.: Large Laser Spots and Fault Sensitivity Analysis

May 4, 2016, IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA

Results

Correlation for each delta hypothesis

- Varying fault probability: {20%, 50%, 80%}
- N Number of Measurements
- Example 20%, N=1000 \rightarrow 200 out of 1000 shots faulty

→ Correct hypothesis shows highest correlation

May 4, 2016, IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA

Outlook

ATXmega (250nm min. feature size)

- Sbox: ~ 230 μm x 310 μm
- 45 μm spot

Scaling to 11nm?

- Sbox: ~ 10 μm x 13μm
- $\sim 2 \ \mu m \ spot > diffraction limit$

Trade-Off: Spatial accuracy vs timing resolution
ps / fs lasers with very low jitter available

Conclusion

- Considered timing violations using lasers
- Laser + FSA: very relaxed fault model
 - □ No ciphertext/faultytext
 - □ Only information whether fault occurred or not
 - □ Random (known) plaintext
 - □ Large spot size OK
 - □ Should work down to latest technology
- Countermeasures at smallest feature sizes still required

Future Work:

Replacing very high speed clock glitches by laser fault injection?

Thanks! Questions?